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PREFACE 

This text contains the first draft of my lecture notes on applied econometrics most of which were 

prepared for my Advanced Econometrics classes at the New School for Social Research during. 

The emphasis of the text is on the needs of general gradute students and policy analyists wishing 

to employ econometrics for research; those who wish to delve more deeply into the econometric 

theories of the topics examined should consult some of the works cited in the text. For that 

reason, the covegae of the text broad, though I cannot claim the text examines all key areas of 

applied econometrics. Still, it does cover a wide range: microeconometrics, including duration 

models; short and long panel data analysis, including dynamic and heterogenous panels, and 

macroeconometric time-series to which I have added a new chapter on volatility analysis. The 

text is divided equally into two sections that broadly follow my classes of advanced econometrics 

I and II at New School, though I have added a section on Machine Learning econometrics. 

However, I have allocated longer treatments and more exercises to three areas: models of 

duration analysis in view of their relevance to Covid-19 related pandemic research in health and 

economics, and Bayesian econometrics, as the approach requires background in non-simulation, 

prior to simulating applications. Moreover, with fast expanding use of Machine Learning models 

in econometrics, more space is also allocated to chapters 19 and 20 on Machine Learning models. 

I have prepared a separate supplementary text of solutions manual for end-of-chapter exercises 

of the full text to non-empirical and computer-based questions. All the empirical exercises are 

with Stata except in chapters 19 and 20 on that have a mixture of empirical exercises in both 

Stata and R to take advantages of wider avaiablility of Machine Learning empirical examples in R. 

A folder of all data files used in every chapter is also available. Reference list contains each key 

chapter references rathe than the extensive sources cited in the test. 

Finally, I would like to express my appreciation for the helpful comments I received from Duncan 

Foley on the Bayesian portions of this text, and to thank the students at New School who 

attended my classes; their curiosity, questions and discussions have brought more clarity and 

accuracy to the text, though undoubtedly there is much room for improvement.      

Feridoon Koohi, August 2022 
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Chapter 1 Maximum Likelihood, Other Nonlinear & Bayesian Estimation 

Introduction 

This chapter briefly discusses some basic features of nonlinear estimation. Nonlinear function of 

the dependent variable can assume different forms; nonlinearity can consist of parameter 

nonlinearity, or result from censoring/truncation data, or from the loss function even if the 

conditional mean is linear in parameters. The two leading estimators we employ in all such cases 

are the maximum likelihood (ML) estimator and the non-linear (NL) estimator.  

The maximum likelihood is the most efficient estimator among the class of consistent 

asymptotically normal estimators. The Likelihood Principle chooses as estimator θ for the true 

parameter vector 𝜃0that maximizes the likelihood of observing the actual sample; the likelihood 

of the probability density for the continuous case, and the probability of mass function for the 

discrete case. For example, if there are two values of θ for the probability of the observed data 

occurring of 0.005 and 0.008, on the likelihood principle, the second θ is preferred, or B density 

over A shown below.  

 

The likelihood function is denoted as 𝐿𝑁 = (𝜃|𝑦, 𝑋) based on the sample [(𝑦𝑖, 𝑋𝑖), (i=1, 

2, . . . , N)]; given independent observations, it is the joint function defined by the product of the 

individual densities ∏ 𝑓(𝑦|𝑥𝑖, 𝜃)𝑖 , equivalently defined by the log-likelihood function as the sum 

of logs of this product ∑ 𝑙𝑛𝑓(𝑦|𝑥𝑖, 𝜃)𝑖 . Hence, maximizing 𝕃𝑁(𝜃) is equivalent to maximizing 

𝕃𝑁(𝜃)= 𝑙𝑛 𝐿𝑁(𝜃). For cross-sectional data, the observation (𝑦𝑖 , 𝑋𝑖) are independent over i, 

resulting to the log-likelihood function 

𝑁−1𝕃𝑁(𝜃)=
1

𝑁
∑ 𝑙𝑛𝑓(𝑦|𝑥𝑖 , 𝜃)𝑁

𝑖 = 1       (1.1)   

where division by N makes       the function an average one.  
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Some commonly employed distributions and parametric specifications are shown in table 1.1.  For 

continuous data on (-∞, ∞), the normal is the standard distribution; the classical regression model 

with μ=x′𝑦 and constant 𝜎2. For discrete binary data with (0, 1) values, is the Bernoulli, a special 

case of binomial density. The parameterization of the Bernoulli density leads to logit and probit 

models with p=Φ(x′𝑦) with Φ(.)  the standard normal cdf. For positive continuous data on (0, ∞), 

esp. duration data, the exponential density is common, though the more flexible Weibull, gamma, 

and log-normal are often employed too. For integer-valued count data taking values 1, 2, …., the 

Poisson and negative binomial ae the usual densities setting λ=exp( x′𝑦) to ensure a positive 

conditional mean. For incomplete observed data, censored or truncated distributions are used, the 

most common being the censored normal that leads to the Tobin model. The standard likelihood-

based models are specified in terms of the distribution of the dependent variable rather than that 

of the error term.  

Table 1.1-Commonly Used LM Densities 

 

1.1 Maximum Likelihood Estimator 

The MLE maximizes the log-likelihood function for y conditional x that solves the first-order 

conditions 

                                        
1

𝑁

𝜕𝕃𝑁(𝜃)

𝜕𝜃
 = 

1

𝑁

𝜕 ln 𝑓(𝑦𝑖|𝑥𝑖 , 𝜃)
 

𝜕𝜃
 = 0                           (1.1.1) 

The gradient vector 
𝜕𝕃𝑁(𝜃)

𝜕𝜃
 is called the score vector, and when evaluated at the true parameter 

values 𝜃0, it is called the efficient score. The Regularity Conditions are  

𝐸𝑓

𝜕 ln 𝑓(𝑦|𝑥, 𝜃)
 

𝜕𝜃
 =∫

𝜕 ln 𝑓(𝑦|𝑥, 𝜃)
 

𝜕𝜃
𝑓(𝑦|𝑥, 𝜃) = 0     (1.1.2) 
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−𝐸𝑓

𝜕2ln 𝑓(𝑦|𝑥, 𝜃)
 

𝜕𝜃𝜕𝜃′  =𝐸𝑓

𝜕 ln 𝑓(𝑦|𝑥, 𝜃)
 

𝜕𝜃

𝜕 ln 𝑓(𝑦|𝑥, 𝜃)
 

𝜕𝜃′ 𝑓(𝑦|𝑥, 𝜃)   (1.1.3) 

The expectation of the score vector by (1.1.2) is equal to zero; note that we take the expectation, 

𝐸𝑓(.), with respect to 𝑓(𝑦|𝑥, 𝜃)density. The expectation of the outer product of the score vector 

is the matrix   

𝔗 = 𝐸[
𝜕𝕃𝑁(𝜃)

𝜕𝜃

𝜕𝕃𝑁(𝜃)

𝜕𝜃′ ]        (1.1.4) 

The variance of the score vector 
𝜕𝕃𝑁(𝜃)

𝜕𝜃
 is (1.1.4) since by (1.1.2), the vector has zero expectation. 

Large values of 𝔗 mean that small changes in θ result in large changes in the log-likelihood, 

hence the function contains a great deal of information about θ. Defined by (1.1.4), 𝔗is called 

Fisher information matrix. The regularity condition (1.1.3) for the log-likelihood function 

(1.1.1) implies  

−𝐸𝑓 [
𝜕2𝕃𝑁(𝜃)

𝜕𝜃𝜕𝜃′ |𝜃0
] = −𝐸𝑓 [

𝜕𝕃𝑁(𝜃)

𝜕𝜃

𝜕𝕃𝑁(𝜃)

𝜕𝜃′ |𝜃0
]      (1.1.5)1 

Provided the expectation is with respect to 𝜃0. (1.1.5) is called the information matrix equality 

and implies that the right-hand side of the equation is also equal to the information matrix.   

 

Distribution of the LME 

Consistency requires 𝐸[
𝜕 ln𝑓(𝑦|𝑥, 𝜃)

 

𝜕𝜃
|𝜃0

] = 0; this condition is satisfied by (1.1.2) as long as the 

expectation is taken with respect to 𝑓(𝑦|𝐱, 𝜃0), that is if the dgp is correctly specified for 

𝑓(𝑦|𝐱, 𝜃0), then the MLE is consistent for 𝜃0. Consistency of ML distribution is based on the 

following assumptions: 

(i) The dgp is the conditional density 𝑓(𝑦|𝐱, 𝜃0) defining the likelihood function (correct 

specification) 

(ii) The density function satisfies 𝑓(𝑦|𝐱, 𝜃(1) = 𝑓(𝑦|𝐱, 𝜃(2) 𝑖𝑓𝑓𝜃(1) = 𝜃(2) (for 

uniqueness) 

 
1 The outer product on LHS of (1.1.3) is equal to the (negative) inner product on its RLS, this is a scalar 

equal to the trace of the outer product matrix. The scalar is the product of the Euclidian 1-by-1 vectors 

generalized to the product of 1-by-m & m-by-1 vectors where one vector has components in the opposite 

direction of the other, for details, see Pesaran (2015, section 9.2), or Wooldridge (2010, section 13.5).  
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(iii) 𝐴0 = [𝑝𝑙𝑖𝑚 
1

𝑁

𝜕2𝕃𝑁(𝜃)

𝜕𝜃𝜕𝜃′
|𝜃0

] exists and is finite nonsingular (for the matrix of variance). 

(iv) The order of differentiation and integration of the log-likelihood can be reversed (to 

ensue regulatory condition (1.2) for the expectation of the score vector.)2 

Proposition on Distribution of ML Estimator:  based on (i)-(iv), the ML estimator �̂�𝑴𝑳, defined 

to be the solution of the first-order conditions 
1

𝑁

𝜕𝕃𝑁(𝜃)

𝜕𝜃
, is consistent for the true parameter value 

𝜃0 and √𝑁(𝜃𝑀𝐿 − 𝜃0) →𝑑 𝒩[0, −𝐴0]3. 

The proposition results in the asymptotic distribution of the MLE given as 

𝜃𝑀𝐿~
𝑎[𝜃, (𝐸[

𝜕2𝕃𝑁(𝜃)

𝜕𝜃𝜕𝜃′
])−𝟏]        (1.1.6) 

(1.1.6) is evaluated at 𝜃0, and we assume LLN applies to replace the plim operator by lime. The 

right-hand side of (1.1.6) is the Cramer-Roa lower bound (CRLB) of the variance matrix of 

consistent asymptotically normal estimators with convergence to normality of √𝑁(𝜃 − 𝜃0) 

uniform in the compact intervals 𝜃0; here replacing the basic lower bound CRLB of the variance 

of unbiased estimators in small samples.   

Example: Poisson Regression 

The Poisson distribution is suitable for a dependent variable that takes only nonnegative integer 

values 0, 1, 2, …; employed to model the number of occurrences of an event, e.g. number of doctor 

visits per year. The Poisson probability mass function, discussed in more detailed in chapter 3, is 

F(y|x)=𝑒−𝜆𝜆𝑦/𝑦! 

where 𝑦! stands for the factorial of y, the function is specified as λ=exp(𝑥′𝛽) with E[y]=λ and 

Var[y]=λ, hence resulting in the density of the Poisson regression for a single observation   

f (y|x, β) = 𝑒−exp (𝑥′𝛽)exp (𝑥′𝛽)𝑦/𝑦! 

 
2 As an example, the expectation and the exponential function cannot be interchanged, see Q-1 exercise.   
3 Multiplication by √𝑁 re-scales 𝜃 to obtain a random variable that has finite, nondegenerate distribution 

as N →∞. 
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The maximum likelihood of this function is the joint density over the sample observations 

∏ 𝑓(𝑦|𝑥𝑖, 𝜃)𝑖 , equivalently defined by the log-likelihood function as the sum of logs of this product 

∑ 𝑙𝑛𝑓(𝑦|𝑥𝑖, 𝜃)𝑖 . The log-density for the ith observation is 

ln f (𝑦𝑖 |𝐱𝒊, β) =−exp(𝑥𝑖
′𝛽) + 𝑦𝑖𝑥𝑖

′𝛽 − 𝑙𝑛 𝑦! 

Hence, the Poisson MLE estimator �̂�maximizes  

𝑄𝑁(𝛽) = √𝑁 ∑{−exp(𝑥𝑖
′𝛽) + 𝑦𝑖𝑥𝑖

′𝛽 − 𝑙𝑛 𝑦!}

𝑁

𝑖=1

 

Where the scale factor √𝑁 is included to ensure𝑄𝑁(𝛽) remains finite as N→∞; the estimator 

solves the first-order conditions for 
𝜕𝑄𝑁(𝛽)

𝜕𝜷|�̂�
= 0, or 

√𝑁 ∑ (𝑦𝑖 − exp(𝑥𝑖
′𝛽)) 𝐱𝑖|�̂�

𝑁
𝑖=1  = 0 

This is a nonlinear equation that must be solved by numerical iterative methods since it has no 

analytical solution.  

1.2 Quasi-Maximum Likelihood 

The Quasi-MLE�̂�𝑸𝑴𝑳 maximizes a log-likelihood function with a mis-specified density that 

usually leads to inconsistent estimation. The density mis-specification results in inconsistency 

because the expectation is no longer evaluated with respect to the correct 𝑓(𝑦|𝐱, 𝜃0). However, the 

Quasi-MLE𝜃𝑄𝑀𝐿 converges in probability to the pseudo-true value 𝜃∗. If E[y|x]≠𝒙′𝛽0, the OLS 

can still be unbiased, the QMLE has a similar interpretation. Let the joint density of 𝑦1, , . . . , 𝑦𝑁 

be f (y |θ) and the unknown true density as f (y) where dependence on regressors are left 

out to simplify notations. Then the Kullback-Leibler information criterion (KLIC) is defined 

as 

KLIC=E [ ln (
𝑓 (𝑦) 

𝑓 (𝑦 |𝜃)
)] 

where the expectation is with respect to 𝑓(𝑦). LLIC has a minimum value of zero when 

𝑓 (𝑦)= f (y |𝜃0) when the density is correctly specified, and values > 0 indicate greater 

departure from the true density. Then the QLME minimizes the gap measured by KLIC 
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between f (y |θ) & f (y). In some special cases the QMLE is consistent with a partially mis-

specified density; an example is the linear regression model with normality even if the errors 

are nonnormal as long as E (y |x)=𝑥′𝛽0. Similarly, the linear exponential family (LEF)  

f (y |μ)=exp[α(μ)+b(y)+c(μ)y] 

where b is a normalizing constant to ensure the probability sum up or inyegrate to 1, 

and[α(μ)+c(μ)y] is linear in y. The LEF is robust to mis-specification; hence, QMLE with a 

LEF is consistent as long as the mean of y, conditional on x, is correctly specified, it is not 

necessary for the true dgp for y be LEF . The models based on the LEF are called generalized 

linear models (GLMs); this class includes nonlinear least squares, Poisson, geometric, probit, 

logit, binomial, gamma, and exponential regression models. Table 1.2 shows common 

examples of LEF.  

 

Table 1.2-Common Examples of LEF 

 

1.3 Nonlinear Least Squares (NLS) 

The NLS estimator E[y|x]=g(x, β) where g(.) is nonlinear in β; the linear least squares is a 

special case of the NLS with g(x, β) = 𝐱′𝛽. The typical reason for a nonlinear specification is 

to allow E[y|x] to include a range of restriction, for example E[y|x]>0 . The NLS applied to 

heteroskedastic models are less efficient than the MLE but extensively employed because 

they rely on weaker distributional assumptions. The NLS estimator minimizes the sum of 

squared errors 
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𝑄𝑁(𝛽) = √2𝑁 ∑(𝑦𝑖 − 𝑔(𝑥𝑖
′𝛽))2

𝑁

𝑖=1

 

where the scale factor ½ intended to simplify the analysis. Differentiation for the NLS first-

order conditions  

𝜕𝑄𝑁(𝛽)

𝜕𝛽
= √𝑁 ∑

𝜕𝑔𝑖

𝜕𝛽
(𝑦𝑖 − 𝑔𝑖

𝑁

𝑖=1
) = 0 

These conditions restrict the (y – g) to be orthogonal to 
𝜕𝑔

𝜕𝛽
 rather than to x, as in the linear 

case. Once again, there is no analytical solution for the NLS minimization; the iterative 

estimation methods are necessary.  Table 1.3 shows the most common examples of NLE. 

The ML and NLS are two leading examples of a general class of m-estimators that maximize 

an objective function defined over sum or average of N different subfunctions.    

Table 1.3-common examples of NLE 

 

1.4 Marginal Effects in Nonlinear Regression    

We are often interested estimating the marginal effect of a unit change in a regressor 𝐱𝐢 on 

the conditional mean of y.  However, under nonlinearity this interpretation is not valid. For 

example, if E[y|x]=exp(x′𝛽), then ∂E[y|x]/∂x=exp(x′𝛽)𝛽 which is a function of both 

parameters and regressors; the size of the marginal effects depend on  β but also on changing 

x, hence vary with the evaluation value of x. In general, the marginal effects vary with the 

evaluation value of x.  
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There are three common measures of marginal effects; these measures are all equal 

in the linear case but they differ in nonlinear models, as shown in table 1.4. The first 

estimates the average the marginal effects for all individuals, the second evaluates the 

marginal effect at x=�̅� for a representative individual, and the third evaluates the marginal 

effects for  specific characteristics x=x*, the marginal effect for a female with a college degree.  

Table 1.4-Three Different Estimates of Marginal Effects 

 

 Direct interpretation of coefficient estimates is possible by using single-index 

models based on the following specification  

E[y|x]=g(x′𝛽) 

That is, the data and parameters enter the nonlinear mean function g(.) through the single index 

𝐱′𝛽. Then, the mean is a nonlinear function of a linear combination of the regressors and 

parameters. This is the case of mild nonlinearity for which the marginal effects use the calculous 

methods, thus: 

∂E[y|x]/∂𝑥𝑖=𝑔′(x′𝛽)𝛽𝑖 

where g’(𝑧) = 𝜕𝑔(𝑧)/𝜕𝑧. Hence, the relative effects are given by  

∂𝐸[𝑦|𝐱]/ ∂𝑥𝑗

∂𝐸[𝑦|𝐱]/ ∂𝑥𝑘
=

𝛽𝑖

𝛽𝑘
 

because the common component g ’(𝐱′𝛽)cancel out. This method averages the marginal effects 

of all individuals., and it tends to change relatively little across different functional form g (.).  

Many standard nonlinear models such as logit, probit, and Tobit are of this single form.  
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An alternative, the Finite-Difference Method measures the marginal effects based on a 

comparison of the conditional mean when 𝑥𝑖  is increased by one unit with the value before 

the change.  

𝛥𝐸[𝑦|𝐱]

𝛥𝐱𝑖
=g(x + 𝑒𝑗 , 𝛽) − 𝑔(𝐱, 𝛽) 

Where  𝑒𝑗 is a vector with𝑒𝑖 = 1 for ith entry and zero for other entries. For the linear case, the 

calculus and finite-difference methods lead to identical results, but with nonlinear models, the 

methods produce different marginal effects except for a minute change in 𝐱𝑖. 

Calculus methods are often used for continuous regressors, while finite-difference methods 

are used for integer-valued regressors, for example the indicator (0, 1) variable.  

Example: an exponential conditional mean yields ∂E[y|x]/∂𝒙𝒋= E[y|x].𝛽𝑗; a unit change in 𝑥𝑖has 

a semi-elasticity interpretation because the change in 𝑥𝑖  results in the multiple of 𝛽𝑖, that is, 

if 𝛽𝑖=0.2 then a unit change leads to 0.2 times that amount, a 20% additional change by 

single-index/calculus method. On the other hand, the finite-difference method computes the 

marginal from  

∂E[y|x]/∂𝒙𝒋= E[y|x].(𝑒𝛽𝑗 − 1)  

Thus, except when 𝛽𝑖 is very small, then there will be a difference, for example  𝛽𝑖 =0.2, 

𝑒𝛽𝑖=1.22, an increase of 22%.  

1.5 OLS & MLE Asymptotic Expectation and Asymptotic variance  

An estimator must have two desirable features. It should be asymptotically consistent and should 

be able to generate an asymptotic distribution for conducting statistical inference. Consistency is 

about what would happen to the moments of a distribution if the sample size becomes increasingly 

large while we also make numerous random resamples for each size. Since we work only with a 

fixed sample size, consistency is a thought experiment with a commonsense appeal: if you cannot 

estimate a good approximation for a parameter of interest by increasing the sample size, then you 

must have a defective estimator. Here we briefly examine the asymptotic estimation and 

distribution of the classical approach for the least squares and maximum likelihood models to 

emphasize the common principle around which both estimators are organized.  
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First, assume we have a unique true parameter value θ that generates the data. This condition 

requires the correct specification of the data generating process (dgp), and its unique 

representation, and it is estimated by 𝜃. Even in a very large sample, θ and 𝜃 will not be exactly 

equal because of the randomness of a sample but instead, we require 𝜃 to converge in probability 

to θ, that is, 𝜃 →𝑝 𝜃. Next, as N→∞, the distribution of 𝜃 degenerates with all mass at θ ; to prevent 

that result, we re-scale the estimator 𝜃 by √𝑁 to obtain a nondegenerative distribution and examine 

the behavior of √𝑁(𝜃 - θ ) as N→∞. For many estimators, √𝑁(𝜃 - θ ) converges in distribution to 

the multivariate normal, leading to the limit distribution of the estimator 𝜃. The OLS case 

expresses this result by  

√𝑁(𝜃 - θ )=(
1

𝑁
∑ 𝑥𝑖𝑥𝑖

′)𝑁
𝑖=1

−1 1

√𝑁
∑ 𝑥𝑖𝑢𝑖

𝑁
𝑖=1  

where we can define non-singular matrix A, such that (
1

𝑁
∑ 𝑥𝑖𝑥𝑖

′)𝑁
𝑖=1

−1
→𝑝 𝐴−1. By the CLT, the 

second part involving 𝑥𝑖𝑢𝑖 on the RHS has an asymptotic normal distribution with mean zero and 

variance-covariance matrix B. Then, √𝑁(𝜃 - θ ) has an asymptotic multivariate normal distribution 

with mean zero and variance-covariance matrix 𝐴−1𝐵𝐴−1. To obtain this result, we note that while 

the sample variance is not an unbiased estimate of the population 𝜎2, because E(√𝑆𝑛)≠√E(𝑆𝑛), by 

the LLN, plim𝑆𝑛
2 = √𝑝𝑙𝑖𝑚𝑆𝑛

2 = √𝜎2 = 𝜎, therefore 𝑆𝑛is consistent for σ. Using that result, it can 

be shown that B=𝜎2𝐴, leading to 

√𝑁(𝜃 - θ )~𝑎𝑁(0, 𝜎2𝐴−1). 

A limit distribution for an m-estimator can be similarly obtained by a first-order Taylor expansion 

approximation that leads to:  

√𝑁(𝜃 - θ )~𝑎𝑁(0, 𝐴−1𝐵𝐴−1) 

where A=plim 𝑁−1 ∑ 𝜕2𝑞𝑖(
𝑁
𝑖=1 𝜃)/𝜕𝜃𝜕𝜃′|𝜃 and B= plim 𝑁−1 ∑ 𝜕𝑞𝑖(

𝑁
𝑖=1 𝜃)/𝜕𝜃𝜕𝜃′|𝜃. 

We can then obtain the distribution of 𝜃 by the division of the LHS of the above by √𝑁 to have  

V|𝜃| = 𝑁−1(0, 𝐴−1𝐵𝐴−1) 
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This relationship depends on the unknown true parameter θ, and is computed by the estimated 

asymptotic variance using consistent �̂� & �̂� of A & B. 

�̂�|𝜃| = 𝑁−1�̂�−1�̂��̂�−1 

1.6 Basics of Bayesian Methods  

So far, we have presented the classical view of econometrics. We discussed how the classical 

approach employs the data to produce a “best” point estimate �̂� for the true but unknown parameter 

β linearly by minimizing the squared sum of errors by the least squares estimator, or non-linearly 

maximizing the likelihood function by the maximum likelihood estimator. The parameter estimate, 

�̂�, is shown to be the outcome of each random sample drawing repeated a large number of times, 

the classical model’s organizing principle, by appealing to the LLN and CLT, that has good 

properties such as unbiasedness. This view is summed up in Figure 1.2.     

Figure 1.2 The Classical view of sampling Distribution 

 

The alternative Bayesian approach we examine now has a sharply different organizing principle 

based on subjective probability, and the range of its applicability is increasing, as the advances in 

computer power have reduced the practical difficulties in its implementations. The Bayesian 

approach starts from the calculation of odds taken on the true value β to produce, not a point 

estimate, but the probability of event B occurring given that event A has occurred; this conditional 

probability is called the posterior density function. The odds reflect the subjective probability of 

the researcher or a “prior” density before seeing the data regarding the range of values that the true 

β can assume. The de Finetti coherence principle formalized the concept of subjective probability, 

according to which the individual should never assign probability odds to events that enables 

someone else to choose stakes that are a sure loss for the individual, regardless of the final 

outcome. This simple argument leads to the rule for conditional probability: P(A&B)= 

P(A)P(B|A)=P(B)P(A|B); from which follows the simplest form of Bayes’ theorem  
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P(A |B)= 
𝑃(𝐵)𝑃(𝐴|𝐵)

𝑃(𝐴)
 

That means if we observe the occurrence of the event A, then the probability of B occurring given 

that A has occurred is the posterior probability P(A &B); see  section 17. 1 for the general form of 

Bayes’ theorem. Being a distribution, the posterior is not restricted to a particular point estimate 

but can also produce other percentiles of interest; the choice of a point estimate of β as the mean 

of the posterior density depends on the loss function employed, the most common is the posterior 

mean obtained from a quadratic function proportional to the squared difference of (β -�̂�)2 as 

explained in figure 1.2.  

Figure. 1.3 the Bayesian expected loss using �̂�2 

 

Figure 1.3 shows the loss involved in a specific point estimate 𝛽0
∗ from the posterior distribution 

for every possible true value of β; the expected loss is then obtained from the expectation over all 

possible values of β; not from repeated sampling, as in the classical approach. Suppose β is 

estimated by 𝛽2; different losses result from different unknown true values of β by being estimated 

with different point estimates; four such point estimates, i=1, 2, 3, 4, are shown in figure 1.2, each 

with probability 𝑝𝑖 and the loss 𝐿𝑖. The expected loss from employing 𝛽2is given as the weighted 

average of all 𝐿𝑖. This is only the expected loss from a single estimate, 𝛽2, and must be repeated 

infinitely for all possible values of the true β at different 𝛽𝑖 points to determine the expected losses 

from employing each alternative point estimate 𝛽𝑖. The height of the posterior function 

corresponding to each 𝑝𝑖 gives the probability of each  𝛽𝑖 being the true value of β. When all such 

losses are calculated, then the Bayesian point estimate is chosen from that loss function whose 

expected loss is the smallest; in practice the expected values are not all calculated but rather 

obtained by algebra. For figure 1.3, the mean of the posterior distribution results in minimum 
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expected loss selected as the Bayesian point estimate. Thus, the posterior function is combined 

with a loss function to produce a point estimate based on minimized expected loss. A Bayesian 

can employ uncontroversial non-informative prior reflecting complete ignorance, so the outcome 

is the result of the data alone. Unfortunately, this leads to estimation results identical to the classical 

answers, though with different interpretation. A complete ignorance prior would have the same 

shape and spread as the sampling distribution that is located over �̂� in contrast to the sample 

distribution located over the true, unknown value of β. This critical difference is also emphasized 

when figures 1.2 and 1.3 are compared with respect to the horizontal axis: the classical sampling 

distribution has�̂� on that axis while the Bayesian horizontal axis is drawn with respect to the values 

of β to highlight the fundamental difference on point estimation between the two approaches!     

The conditional probability P(A |B) is an ex ante belief on an event not yet occurred and captures 

well the Bayesian notion that probability is a feature of the individual’s view of reality and has the 

paradoxical implication that econometric analysis should start with the data conditioned on beliefs. 

This requires relating Bayesian probability to observable quantities. This task is accomplished by 

de Finetti’s fundamental concept of exchangeability, defined as: a finite sequence events (random 

variable), t=1, 2, . . . , T, is exchangeable iff  the joint probability of the sequence is invariant  under 

permutation of the subscripts: 

P(y1, y2, . . . , yT)=P(y𝜋1, y𝜋2, . . . , y𝜋T) 

where 𝜋(t) is a permutation of the elements in the sequence). Further, an infinite sequence is 

exchangeable iff any finite subsequence is exchangeable. Exchangeability implies a sequence of 

alike random quantities can be operationalized by probabilities imputed to observable quantities. 

The de Finetti representation theorem provides the necessary correspondence between the 

parameters of subjective probability and the solely observable features of exchangeable sequences. 

For example, a sequence of Bernoulli trials is exchangeable iff the probability of a particular 

sequence is independent of the order of success (s) and failure (F); then the sequences are given 

the same probability. More specifically, if all we know about a coin is that it was tossed three times 

and two heads appeared, then exchangeability requires that we assign equal probability to all three 

sequences HHT, HTH, and THH.   

Formally, define the average number of occurrences as 
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 �̅�𝑇 =
1

𝑇
∑ 𝑌𝑡

𝑇
𝑡=1  

and let a probability mass function (pmp) h(y1, y2, y3, . . . ) =Pr (Y1=y1, Y2=y2, . . ., yT=yT) represent 

the exchangeable beliefs fo a along sequence Yt (t=1, 2, 3, . . . , T)  with its corresponding 

cumulative distribution finction (cdf ) for a particular value of Y, y, given bt H(y)=Pr(Y≤ y). Then 

H(y) has the representation 

h(y1, y2, . . . , yT)=∫ 𝐿(𝜃)𝑑𝐹(𝜃)
1

0
      (1.5.1) 

where θ stands for the probability of success assigned to a probability distribution with cdf F(.), 

interpreted as a belief on the relative frequency of �̅�𝑇 ≤ θ as 𝑇 → ∞; with:  

𝐿(𝜃) = ∏ 𝜃𝑦𝑡(1 − 𝜃)1−𝑦𝑡𝑇
𝑡=1       (1.5.2) 

𝐹(𝜃) = 𝑙𝑖𝑚𝑇→∞𝑃𝐻(�̅�𝑇 ≤θ)     (1.5.3) 

Thus, given θ, F(.) may be interpreted as belief about the long run frequency of �̅�𝑇 ≤θ as T → ∞. 

Exchangeability generalizes the concept of independence by demonstrating that identically 

distributed sequences are not necessarily independent unless exchangeable sequences all have 

equal probability assigned to them, that is iff the probability given to specific sequences of events 

does not depend on the order of “successes” and “failures”. 

Often, however, one has some idea about the likely probability of a parameter of interest to 

formulate an “informative” prior to reflect the odds about the hypothetical bets taken on the value 

of the true unknown parameter β. The employment of an informative prior is the main bone of 

contention between the classical and Bayesian schools, for example, how reliable the estimated 

posterior density would be if the informative density function has an incorrect prior distribution? 

The Bayesian approach provides protection against functional form mis-specification by 

employing a flexible framework that allow the posterior to belong to the same family distributional 

function as the prior, making the two distributions conjugates of each other. However, such 

flexibility may not always be enough to detect mis-specification, especially with large micro-data 

where variables may relate to each other in ways that are not easily identified by assumed, though 

flexible functional forms. In such cases, functional-form-free distribution is an attractive 

alternative option.  
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The algebraic choice of informative prior is more difficult, and often unavailable. For instance, to 

find the point estimate with a quadratic loss function requires estimating an integral for the mean 

of the posterior function; analytical solutions for integrals are frequently unavailable, and solutions 

by numerical methods are computationally demanding in high dimension integrals (those with a 

vector of parameters). However, improved computer power has overcome such problems by 

making possible the estimation of an integral by simulation. Simulation relies on the mathematical 

feature that an integral has an expected value interpretation and obtainable from ∫ℎ(𝑥)𝑓(𝑥) where 

x is a random variable with density 𝑓(𝑥). We draw an x value from 𝑓(𝑥) to calculate each ℎ(𝑥) a 

large number of times by Monte Carlo simulation methods and then average all ℎ(𝑥) values.   

The Markov Chain Monte Carlo (MCMC) method has long sequentially drawn simulated values 

that converge to a stationary invariant distribution corresponding to the target posterior density. 

The two most common MCMC simulation methods to find such invariant distribution are the 

Gibbs sampler and the Metropolis-Hastings (MH) algorithms; the former is a special case of the 

latter. The Gibbs sampler employs a large number of random draws sequentially from alternating 

blocks of conditional densities that converge on the invariant posterior distribution; to start the 

simulation, a portion of the initial sample is disregarded as the burn-in sample. For example, the 

simulation chain for the posterior distribution of the normal linear homoscedastic model with 

normal-gamma priors consists of repeated draws from the normal distribution conditional on the 

precision parameter (inverse of variance) 𝜎−2and from the gamma distribution conditional on the 

normal β. The MH algorithm simulates from a proposal density that covers the range of values for 

the posterior target density, it is more general than the Gibbs method and used when sampling 

from the blocks of conditionals is unavailable. We discuss Bayesian simulation methods in some 

detail in chapter 18, see also exercise questions 1.6, for Bayesian linear model with the MH 

simulation, and 4.3, for the Bayesian random effects with the Gibbs simulation.     

Several advantages of the Bayesian approach briefly outlined above become evident when 

contrasted with the classical approach. The main contrast is that a classical approach justifies a 

good estimator by appealing to its asymptotic behavior as sample size N →∞ in hypothetical 

repeated sampling, while a Bayesian approach obtains point estimation conditional on the actual 

data modified by the investigator’s subjective priors. The classical school is called the frequentist 

in the Bayesian literature in view of its definition of probability based on the relative frequency 
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with which an event occurs in repeated sampling. However, as the sample increases in size, the 

Bayesian estimator collapses on the MLE estimator because the importance of the prior diminishes 

and the actual data dominate the outcome; the likelihood mean and mode become identical. 

Another important contrasting aspect of the Bayesian method is its approach to hypothesis 

testing. Since the Bayesian mothed is not producing a single estimate to test against the true value 

but a posterior distribution; its hypothesis tests are based not on point estimates but on comparing 

entire estimated posterior distributions. For example, suppose model M1 has parameter β ≤1 while 

model M2 has parameter β ≥ 1, then the integral of the posterior of ∫ 𝛽𝑝
1

−∞
=prob(M1), with 

prob(M2) =1 - prob(M1), and their ratio, called the posterior odds ratio, summarizes this 

information, therefore, only model comparison rather than significant tests are relevant in the 

Bayesian approach4.   

The algebra of Bayesian methods is usually considerably more difficult than that of the classical 

approach. For example, the classical analysis of a multivariant regression requires the regression 

errors to be normally distributed, while the Bayesian linear multivariant regression requires a 

multivariate normal-gamma prior, combined with a multivariate normal likelihood for the data and 

results in a multivariate normal-gamma posterior. However, the applied econometrician can rely 

on computer software to carry out the necessary simulations to produce the required posterior 

distribution.  

Table 1.5. provides an applied example for the regression of wage on age for a sample of women 

aged 18-45 in the US labor market. 

Table 1.5 linear regression of womens wage on age by least squares and linear Bayesian 

estimators. 

Wage linear least squares regression linear Bayesian regression* 

Age 0.3994 (0.0605) 0.4009 (0.0596) 

Constant 6.0331 (1.7915) 5.9691 (1,7372) 

*Prior distributions: slope parameters normal (0, 10000); variance inverse Gamma (0.01, 0.01) 

simulated by MCM-MH method. 

 
4 There is a subtle difference between selecting an optimal model from among a number of models 

regardless of its true status, and testing for a parameter in relation to its true value. The former always leads 

to definite outcome and therefore most relevant for making a decision, while the latter need not have a 

definite outcome because the rejection of a hypothesis does not necessary suggests accepting any of the 

alternatives.     



 21 

We note that the priors employed in table 1.5.are normal for parameters and inverse-gamma for 

variance. The OLS and Bayesian means and standard errors are very similar, suggesting the priors 

are fairly uninformative. The exercise 1.6 implements the regressions for this example; further 

example is exercise 4.3 with applications based on the classical and Bayesian panel data random 

effects logit estimators.      

We end this chapter by drawing attention to two different principles around which all the topics 

discussed in the rest of this text are organized. These two principles are rooted in two very different 

view of probability, one based on estimation of the unknown true parameters asymptotically by 

appeal to the LLN and CLT, the other by combining subjective priors with the data to produce 

estimates with the smallest predictive loss (due to error). These are two different outlooks about 

the interpretation of reality; since they essentially constitute different readings of the same 

evidence, the superiority of one over the other can never be empirically decided; they are two 

different “paradigms”. If the history of science is any guide, the place of each will be decided by 

the comparative success of each econometric approach to explain new development’, invent new 

tools to explore them, and the comparative simplicity of the solutions they offer. In any case, it is 

not the aim of this applied text to convince; instead, we draw attention to the areas where each 

approach can provide a relatively more effective solution in order demonstrate the usefulness of 

learning both approaches. To cite two examples, the classical approach to non-nested model 

selection involves formulating a third all-encompassing model; a procedure that is sometime hard 

to implement, see Pesaran (2015, chapter 11); by contrast, the Bayesian approach to model 

selection, discussed in section 17.1, requires a simpler method to implement testing for the optimal 

model selection. Even in the classical approach, the Bayesian model selection is the preferred 

alternative to the classical method of combining models by polling their point forecasts, see 

(Granger and Pesaran , 2000). On the other hand, the classical econometric approach has a well-

developed body of distribution-free, though computationally intensive, estimators to protect 

against functional form mis-specification, while the Bayesian approach cannot easily preform such 

estimation. What is called distribution-free Bayesian estimators on a closer examination turns out 

to consist of flexible distributions models rather than distribution-free ones, see Greenberg (2013, 

chapter 9). Those interested in applied econometrics would likely produce more effective research 

if they identified and learned about such differences. It would be helpful to bear in mind that a 

range of topics to which each approach applies are in fact organized around two fundamentally 
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different principles: one based on asymptotic estimation and testing, the other on posterior 

estimation obtained from combining subjective probability with data. 

Readings 

For textbook discussion, Cameron and Trivedi (2005, chapter 5); Wooldridge (2010, chapters 12 & 13).  

 

Chapter 1 MLE, Nonlinear & Bayesian Exercises 

Q1.1 If f (y|x;θ) is a correctly specified model for the density of 𝑦𝑖, does 𝜃0 solve by maximization 

of  the conditional expectation of 𝑦𝑖, Maxθ∈Θ E[f (𝑦𝑖|x𝑖;  𝜃)]? 

Q1.2 Consider a general binary response model P(𝑦𝑖 = 1|x𝑖=G(x𝑖, 𝜃0), where 0< G(x,θ)<1 for 

all x and θ; x and θ need not have the same dimension: let x be a K-vector and θ a P-vector. 

a. Write down the log likelihood for observation i, 

b. Find the score for each i; show directly that E[𝒔𝑖(𝜃0)|𝐱𝑖] = 0. 

Q1.3 Suppose a before making a decision to publish a text book in hard-cover, a publisher 

surveyed 45 readers and found 15 preferred hardcopy edition while 30 preferred paperback 

edition. 

(a) What is the maximum likelihood estimate of θ, the probability that a customer will buy a 

hard copy volume? 

(b) Using a uniform prior what is your posterior distribution for θ ? 

(c) What is the mean of this distribution? Hint: The beta distribution given by f (x) ∝ 

𝑥𝜃−1(1 − 𝑥)𝜙−1 has mean 
𝜃

𝜃+𝜙
. 

Q1.4 Suppose you program a computer to do the following: 

i. Draw 50 x values from a distribution uniform between 2 and 22 

ii. Draw 50 e values from a standard normal distribution 

iii. Create 50 y values using the formula y=2+3x+4e 

iv. Regress y on x obtaining the sum of squared residuals SSE1. 

v. Regress y on x for the first 20 observations, obtaining SSE2. 

vi. Regress y on x for the last 30 observations, obtaining SSE3. 

vii. Add SSE2 and SSE3 to get SSE4. 

viii. Calculate w1=(SSE1-SSE4)/SSE4 
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ix. Repeat the process described beginning with step (ii) until 3000w values have been 

created, w1 through w3000. 

x. Order the 3000w values from smallest to largest. 

What is your best guess of the 2970th of these values? Explain your reasoning.  

Q1.5 Download mus10data.dta and select year02; the data set contains the number visits to a 

physician’s office, and individual characteristics are: private insurance, chronic condition, gender 

and income.   

a.  Apply MLE for docvis Poisson regression with robust standard error estimates, and 

comment on the results. 

b.  Apply the NLE for the same regression, and compare the outcome with that in a. 

c.  Interpretation of the coefficients is an issue in non-linear estimation. Obtain the marginal 

effects for a. first by finite-differences, then by calculus methods; comment on the 

differences 

d.  Compare the marginal effects in c. at mean with the estimates at representative value, 

average value 

e.  Using the mean value of regressors, compute first elasticity, then semi-elasticity for the 

impact of a unit change in income on the probability of docvis. 

Q1.6 Download womenwage.dta, containing wages (in $1000,s), age, years of completed 

schooling and experience (tenure) for women over 18 years of age and in the fertility cycle. 

a. Fit a least squares model of wage income on age first, then fit a corresponding Bayesian 

regression. Since the second regression is based on simulation, set a random-number seed 

to 15 start the reproducible results. 

b. Compare the estimates from the least squares with the Bayesian regressions, comment on 

their difference and other features of the Bayesian outcome. 

c. Predict the expected wage of a 40-year-old woman conditional on the above Bayesian 

posterior model. 

 

 

 



 24 

Chapter 2 Generalized Method of Moments 

Introduction 

Many applications of Instrumental Variables require estimating a system of IV equations rather 

than a single-equation estimation. The modern approach to system instrumental variables (SIV) 

estimation employs the generalized method of moments (GMM) to estimate a system of IV 

equations. This section examines some of the properties of a system IV and estimation procedures 

that have applications beyond a system of simultaneous equations such as the analysis of panel 

data, see chapter 5.   

2.1-Method of Moments Approach 

The fundamental assumption of least squares consistency is that the error term must be 

uncorrelated with the mode’s regressors, i.e. E(𝚞|x)=0. Then the conditional mean is E(y|x)=x’β, 

and estimated β provides a consistent measure of the causal effect of the regressors on y. When 

this assumption is violated, the OLS coefficient estimates are no longer the measure of the marginal 

effect of the regressor xj on the dependent variable y, that is E(y|x)≠x’β. However, consistent 

estimation is still possible on the strong assumption that there exits an instrument vector zj highly 

correlated with xj but uncorrelated with 𝚞, i.e. E(𝚞|z)=0. Then differentiating the expected loss  

E (𝚞)2=E[(y - x’β)2]        (2.1.1) 

Solving for β yields the optimal linear predictor  

β = E ([xx’])-1 – E[xy])=0      (2.1.2) 

If the residual in (2.1.2) is obtained conditional on the vector of z, then (2.1.2) becomes the IV 

sample analogue of the OLS estimator; this is an example of the method of moments (MM) 

estimator, and provides the basis for more complicated IV estimation models examined below. 

The instruments are obtained from the moment conditions implied by E(𝚞|z)=0, namely  

E(𝚞 |z)= E[(y - x’β)|z] =0      (2.1.3) 

The main interest in going beyond single-equation IV application is in estimating a system of 

equations with endogenous explanatory variables, typically a set of structural equations, their 

reduced form equations, but also, a single-equation panel data over T different time periods.  
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Consider the following general linear model: Yi=xiβ+𝚞i 

where Yi is a (G x1) vector, xi is a (G x K) matrix, and 𝚞I is the (G x 1) vector of errors.   

A typical example of system MM application is to use the sample mean as an estimate of the 

population mean.  In general, the MM estimator solves the sample moments that correspond to the 

population moments. MM solves for the corresponding sample moments by 

1

𝑁
∑ 𝑧𝑖′(𝑦𝑖

𝑁
𝑖=1 − 𝑥′𝛽) = 0      (2.1.4) 

in order to obtain the linear IV estimator 

�̂�
𝑀𝑀=(∑ 𝑧𝑖𝑥𝑖

′) 𝑁
𝑖=1

−1
 ∑ 𝑧𝑖𝑦𝑖

𝑁
𝑖=1

         (2.1.5) 

More generally, let Z and X stand for the vectors of instruments and variables, then (2.1.5) in matrix 

form is  

�̂�𝑀𝑀=(𝑍′𝑋)−1 𝑍′𝑦        (2.1.6) 

Sometimes, MM estimation may be impossible even with plausible instruments available if there 

are more moment conditions, hence more equations to solve, than there are parameters.  In such 

cases, the MM estimator can be extended into an alternative estimator by a method due to Hansen 

(1982) and known as the generalized method of moments (GMM) that can accommodate the 

case of over-supplied instruments.  

2.2 MM, 2SLS and GMM estimators 

GMM defines a class of estimators based on different choices of moment condition, and different 

weighting w for variance. Four assumptions are required to establish parameter identification, 

consistency and efficiency of GMM estimators, though not all are needed for MM estimators; the 

main focus of GMM estimation is on efficiency. Define the existence of r moment conditions for 

q parameters more generally by  

E [h (𝑤𝑖, 𝜃0)] =0       (2.2.1) 

Where 𝑤𝑖contains all the system’s variables (y, x, z), 𝜃0 stands for the value of θ in the dgp, and 

h(.) defines an (r x 1) vector function that determines the relationship between the variables, 
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namely, it specifies their functional forms. The following assumptions are required for consistency 

and efficiency: 

I-orthogonality condition: the dgp imposes the moment conditions E [h (𝒘𝒊, 𝜽𝟎)] =0, with zi as a 

matrix of observable instruments. This assumption however, is not enough for identification.  

A sufficient assumption for identification is the rank condition 

II-Rank condition: rank of E (𝐳𝐢
′𝐱)=K . This assumption requires that the columns of E (𝐳𝐢

′𝐱) be 

linearly independent of each other5.  Since minimization of (2.1.2) requires an invertible W matrix, 

we also need to assume W  has a nonsingular probability limit:  

III-Probability limit of W :  �̂�p → W as N → ∞ where W is a symmetric positive definite matrix. 

Convergence follows from the law of large numbers because �̂� is a function of sample averages. 

2.3 Distributional condition:  𝑁−1/2 ∑ ℎ𝑖| 𝜃0  →𝑑  𝑁 (0,   𝑆𝛽0)
𝑁
𝑖=1  where 

𝑆𝛽0 = plim 𝑁−1 ∑ ∑ [ℎ𝑖ℎ𝑗 
′𝑁

𝑗=1
𝑁
𝑖=1 |𝜃0]       (2.3.1) 

where ℎ𝑖(.) is the ith component of h(.).  

There are three possible relations between the number of parameters and the number of 

instruments. The first case is if r = q, the model is said to be just-identified since we have as many 

unknown parameters as we have instruments, one instrument for each parameter, or each equation 

(with exogenous variables trivially acting as their own instruments). Then the application of the 

law of large numbers shows that the MM estimator leads to consistently identified parameter 

estimation solved by (2.1.5) and (2.1.6) for �̂�𝑴𝑴. Second, if r < q, this is the under-identified 

case with fewer instruments than unknowns; then no consistent MM exists, quite a common 

situation in practice. Third, when r > q with if more instruments than unknown parameters, known 

as the over-identified case. Then (2.1.3), Z(y - Xβ)=0,  has no solution there is no unique 

relationship . One possibility is to drop as many of the surplus instruments as necessary to reduce 

the case to a just-identified one. However, this means abandoning useful information that, if 

employed, can lead to more efficiency. Instead, we can settle on choosing �̂� so as to make the loss 

 
5 A necessary condition for this assumption in a system of equations requires the Order condition for 

parameter identification; the rule is that the number of excluded exogenous variables must be greater or 

equal to the number of predetermined (endogenous or lagged) variables for each equation at hand.   
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function (2.1.1) to be, not equal to zero but as ”small” (close to zero) as possible. In this case, we 

have (after dropping 1/N to simplify)  

�̂�𝑀𝑀=[∑ 𝑧𝑖
′(𝑦𝑖

𝑁
𝑖=1 − 𝑥𝑖  �̂�)]′[∑ 𝑧𝑖

′(𝑦𝑖
𝑁
𝑖=1 − 𝑥𝑖  �̂�)]   (2.3.2) 

and the MM estimator chooses  �̂�𝑀𝑀 so as to make (2.3.2) as small as possible. Although the results 

are consistent based on the assumptions I & II above, the method very often fails to produce the 

best estimator. However, GMM is a more general estimator that uses a weighing matrix to solve 

for a vector of �̂� by a quadratic loss function in β by 

min.�̂� [∑ 𝑧𝑖
′(𝑦𝑖

𝑁
𝑖=1 − 𝑥𝑖 �̂�)]′𝑊𝑁[∑ 𝑧𝑖

′(𝑦𝑖
𝑁
𝑖=1 − 𝑥𝑖 �̂�)]   (2.3.3) 

where r x r weighing matrix 𝑊𝑁 is symmetric positive definite and independent of β; the subscript 

N indicates its value dependents on the sample. Note that the dimension r (number of moment 

conditions) of 𝑊𝑁 is fixed as N → ∞. Different choices for weighing matrix 𝑊𝑁 lead to different 

estimators, all consistent but with different variances.  In the case of overidentified models, it can 

be shown that (2.3.3) leads to the unique solution of �̂� (see below).  

First, consistency of GMM is based on the first three assumptions above: 

Theorem 1 (consistency of GMM): under assumptions I-III, �̂�p → β as N → ∞ (see Appendix for 

a proof); �̂�𝐺𝑀𝑀 is also asymptotically normally distributed with  

                                                     Ɲ [0,  Ʌ≡ E(z𝑖
′𝚞𝑖𝚞𝑖

′z𝑖)=Var(z𝑖
′𝚞𝑖)]                                   (2.3.4) 

When r =q, the GMM estimator is (2.1.5) and no matter how �̂�is chosen, x’z is a K x K nonsingular 

matrix. While all GMM estimators are consistent, they differ in their different variances 𝑆𝛽0 given 

by (2.1.1). However, by appropriate choices of �̂�, (2.1.1) can be greatly simplified. Let us examine 

the choices. First, if the i and j observations are independent of each other, cross products in 

assumption IV disappear  

𝑆𝛽0= plim 𝑁−1 ∑ [ℎ𝑖ℎ𝑖
′]𝑁

𝑖=1  𝜃0]      (2.3.5) 

In this case, substitute �̂� = (𝑁−1 ∑ [ℎ𝑖ℎ𝑖
′]𝑁

𝑖=1  |𝜃0] in (2.3.2) for �̂�equation results in the estimator 

for a system of 2SLS equations; because it extends the single-equation 2SLS to a system of 

equations, it also called the generalized instrumental Variable estimator (GIVE). Second, when 
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r = q, the just-identified GMM results simplify to those already given above and obtainable from 

(2.3.4). In this case, MM and GMM estimators and the estimates are invariant to the choice of the 

weighing matrix. Third, with r > q, the best choice is a weighting method that simplifies the 

asymptotic normality of GMM by setting W= Ʌ-1 where, that is  

Ʌ-1≡ [E(z𝑖
′𝚞𝑖𝚞𝑖

′z𝑖)]
-1=Var(z𝑖

′𝚞𝑖)]-1       (2.3.6) 

that is the optimal weights matrix are set equal to the inverse of the variance matrix.  

Assumption IV: Optimal weights condition: W= Ʌ-1 where Ʌ is defined as above.  

Addition of assumption IV to those already stated leads to the theorem due to Hansen (1982): 

Theorem 2 (Optimal weighing matrix): under assumptions I-IV, the GMM estimator is the most 

efficient among the class of GMM estimators. This estimator is also called the two-step GMM 

estimator because it estimates the predicted values in a system of equations from several 1st stage 

regressions and then employs them in place of actual values in the 2nd stage.    

Procedure for the application of GMM optimal weighting matrix: 

a. Start with an initial �̂� estimator of β, this is usually the system 2SLS estimator. 

b. Obtain the vector of the residual 𝚞�̂� = 𝑦𝑖 − 𝑥𝑖�̂� for i=1, 2, . . . N 

c. Consistent estimator of (2.3.5) is Ʌ̂  = [𝑁−1 ∑ 𝑧𝑖
′𝚞�̂�

𝑁
𝑖=1 𝚞�̂�𝑧𝑖] 

d. Set  �̂�=Ʌ̂ -1=[𝑁−1 ∑ 𝑧𝑖
′𝚞�̂�

𝑁
𝑖=1 𝚞�̂�𝑧𝑖]

−1 and use this matrix to obtain the asymptotically 

optimal GMM estimator (2.3.6) estimated by 

{(x’z) [∑ 𝑧𝑖
′𝚞�̂�

𝑁
𝑖=1 𝚞�̂�𝑧𝑖]

−1(z’y)}       (2.3.7) 

(2.3.7) is similar to (2.1.6) for the linear case, except that GMM estimator is weighted by (2.3.6). 

The square roots of the diagonal elements of this matrix are the asymptotic standard errors of the 

optimal GMM estimator and it is called the minimum chi-square estimator.  

As a MM estimator, the OLS estimator of the sample mean can be an inefficient estimate 

of the population mean if the data are not from a normally distributed random sample; and remains 

so even with homoscedastic errors, if the errors are not normal. Then the sample median provides 

consistent estimates that may be more efficient than the sample mean based on the assumption that 

the errors are conditionally symmetric. Hence, instead of an OLS MM estimator based on E[xμ]=0, 
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we can make the additional moment assumption that E[u3|x ]=0 that implies  E[u3.x]=0. The 

estimator generates moment condition based on 

[
𝐸[𝑥(𝑦 − 𝑥′𝛽)]

𝐸[𝑥(𝑦 − 𝑥′𝛽)3]
]=[

0
0
] 

This solves for the sample moment conditions with 2K equations but only for K unknown 

parameters. However, the GMM estimator can be employed to set the variance as small as possible 

based on a quadratic loss function so �̂�𝑮𝑴𝑴 minimizes 

 

βQ𝑁
 = [

1

𝑁
∑𝑖𝑥𝑖𝑥𝑖

/
𝑢𝑖]

1

𝑁
∑𝑖𝑥𝑖  𝑥𝑖

/
u𝑖

3
]
]

′

𝑊𝑁  [

1

𝑁
∑𝑖𝑥𝑖𝑥𝑖

/
𝑢𝑖]

1

𝑁
∑𝑖𝑥𝑖𝑥𝑖

/
𝑢𝑖

3
]
] 

Where 𝑢𝑖 = (𝑦 − 𝑥′𝛽) and 𝑊𝑁is a (2K x 2K) weighting matrix. Choices for 𝑊𝑁 can lead to more 

efficient estimators than the OLS. The sample median can be shown to have asymptotic variance 

1/N whereas the sample mean is inefficient with variance V [y]/n=2/N. This optimum GMM 

estimator with two moment conditions gives much lower weights to the second moments if it has 

high variance.  

 The IV approach has traditionally been applied in the context of a system of simultaneous 

equation with right-hand endogenous variables, first to estimate a system of reduced form 

equations, and then to recover the structural parameters from these estimates. Consistency requires 

the rank condition. Then, the equation-by-equation application of 2SLS renders consistent 

estimation of the structural model. However, a more efficient system estimator is the 3SLS that 

assumes homoscedastic errors for each equation but correlated across equation errors terms, and 

exploit this correlation to improve estimation efficiency. First, we obtain the reduced form OLS 

estimates and the predicted values, then we use the predicted in place of actual values in second 

regressions, and finally, since the errors are correlated across equations, we estimate a system of 

structural equations with correlated errors by an estimator similar to the SURE, see chapter 5.  

An important task with the application of the GMM, based on more moments (r) than parameters 

(q), is testing for an over-identification restriction for instrumental validity. Assume we have 
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moment conditions with r > q and E[h (𝑤𝑖, 𝜃0)] =0 as defined by (2.2.1). The overidentification 

test is based on 

1

𝑁
∑𝑖ℎ̂𝑖 = ℎ(𝑤𝑖, 𝜃) 

For the over-identification case,  ∑𝑖ℎ̂𝑖≠0 since r>q.  Given θ estimated by  𝜃𝐺𝑀𝑀; Hansen (1982) 

shows that the over-identification restriction (OIR) test statistic is  

OIR = (
1

𝑁
∑𝑖ℎ̂𝑖 )′ �̂�

−1(
1

𝑁
∑𝑖ℎ̂𝑖) 

where  �̂�= �̂�−1  is distributed as χ2 (r – q) under H0 : E[h (𝑤𝑖, 𝜃0)] =0. Large OIR suggests rejection 

of the population moments and inconsistent GMM estimator. 

 The weak instruments test is another related test based on the first stage reduced-form R2 

result and the F statistic for the joint significance of the main instruments. Typically, instruments 

are weak when the fit for the first-stage regression is poor, or the number of instruments is very 

large relative to the sample size, as will be discussed in the dynamic panel data models in chapter 

5. A common statistic employed is a partial R2 of a regression on one error term obtained from 

regression of y on exogenous x variables; another error term obtained from a regression of the 

instruments z on the exogenous variables x. This method, generalized to structural equations with 

more than one endogenous variable, produces the Shea’s partial R2. With more than one 

endogenous variable, there will be more than one first-stage regression and more than one F test. 

Then, the minimum eigenvalue of a matrix analog of the F statistic is used to test weak instruments. 

We reject the null hypothesis of weak instruments if the F statistic is greater than 13.9.  Two types 

of formal tests of weak instruments tests are available. The first pre-selects the largest bias of 2SLS 

relative to that of OLS; the test requires at least three instruments with one endogenous variable. 

The second tests for significance of the endogenous regressors in the structural model pre-selecting 

a tolerance level for the test size distortion of the Wald statistic. The test has its own table of critical 

values, see empirical exercise 2.2_c-h. 

Another important application of the GMM is dynamic panel data analysis where an MM 

estimator is based on the moment condition E [x𝑖𝑡𝑢𝑖𝑡]=0. If we also assume that 𝑢𝑖𝑡 is uncorrelated 

with regressors in periods other than the current time, then E [x𝑖𝑡𝑢𝑖𝑡]=0 for s≠t supply additional 

instruments employed for more efficient estimators. Note that the lagged instruments themselves 
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are likely to be correlated, hence the application of two- step GMM is commonly employed in 

dynamic panel data, see chapter 6.  

Appendix 

Proof of Theorem 1: We can re-write (2.3.3) as �̂�𝐺𝑀𝑀=(X′Z�̂�𝑍′X)-1(X′Z�̂�𝑍′X), or 

�̂�𝐺𝑀𝑀= [(𝑁−1 ∑ x𝑖
′𝑁

𝑖=1 𝑧𝑖) �̂�(𝑁−1 ∑ z𝑖
′𝑁

𝑖=1 𝑥𝑖)]
−1(𝑁−1 ∑ x𝑖

′𝑁
𝑖=1 𝑧𝑖) �̂�(𝑁−1 ∑ z𝑖

′𝑁
𝑖=1 𝑦𝑖) 

The last term in brackets in this expression is in fact (2.1.4); substituting for yi by (xi𝛽 + 𝑢𝑖) , and 

canceling out positive and negative xi𝛽, leaves 𝑢𝑖 in (2.1.4).  Writing the above with 𝑢𝑖 , and, since 

inconsistency implies �̂�𝐺𝑀𝑀 ≠ β, we have 

�̂�𝐺𝑀𝑀= [(𝑁−1 ∑ x𝑖
′𝑁

𝑖=1 𝑧𝑖) �̂�(𝑁−1 ∑ z𝑖
′𝑁

𝑖=1 𝑥𝑖)]
−1(𝑁−1 ∑ x𝑖

′𝑁
𝑖=1 𝑧𝑖) �̂�(𝑁−1 ∑ z𝑖

′𝑁
𝑖=1 𝚞𝑖) 

Under assumption II, E (zi
′x)≡C has rank K ; and implies that (𝐶/WC ) has also has rank K by 

assumption III, and is therefore nonsingular matrix with its inverse as (𝐶/W C)-1. As N→∞, by the 

law of large numbers  

plim �̂�𝐺𝑀𝑀=β+(𝐶/WC )-1 𝐶/W (plim𝑁−1 ∑ z𝑖
′𝑁

𝑖=1 𝚞𝑖)= β+(𝐶/WC )-1 𝐶/W. 0 = β.                  QED 

Readings 

For textbook discussion, see Cameron and Trivedi (2005, chapter 6), and Wooldridge (2010, 

chapters 8 and 14). Hansen (1986) developed the GMM approach.   
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Chapter 2 GMM Exercises 

Q2.1 Employ the GMM estimator that solves the minimization problem (2.3) to show that  

a. the solution for this GMM estimator satisfies the 1st-order condition 

∑ (𝑧𝑖′𝑥𝑖)
𝑁
𝑖=1  �̂�( ∑ 𝑧𝑖′(𝑦𝑖

𝑁
𝑖=1 − 𝑥′𝛽))=0 

 

b. use this expression to obtain a more general weighted solution of (1.7) for �̂�𝑮𝑴𝑴. 

 Q2.2 Download mus06data.dta, the MEPS data set on log of drug expenditure, ldrugexp, for > 65 

with 4 instruments.   

a. Just-identified case: create a macro for the list of covariates (x2list), then use just one instrument, 

ssiratio, apply 2sls with robust standard errors and 1st  stage requested; comment on the instrument. 

b. Compare 2sls robust, the gmm with heteroskedasticity, the gmm clustered on age, with simple 

2sls. Any notable change? 

c. Apply the Hausman test for hi_empunion endogeneity in 2sls regression; what is the result? 

d. Test for over-identification by the Hansen/Sargan method for the gmm estimator, test result? 

e.  Use all 4 instruments for the gmm & test over-identification, and explain the outcome 

f.  Use Stock-Yogo to test for weak instruments from the gmm regression; carefully state the result. 

g.  Generate an asymmetric restriction on a two-equation structural model and apply 3sls estimator, 

with the following features. 1st : just-identified equation ldrugexp regresses  hi_empunion and all 

exog. var.s; 2nd: over-identified equation regresses hi_empunion on  ldrugexp and ssiratio, but 

exclude age & linc. 

h. Explain how the model's variables meet the 3sls assumptions for consistency 

 

 

 

 



 33 

Chapter 3 Discrete Dependent Variables Models 

Introduction 

Most economic variables are constrained in their range of variation, usually to positive values, for 

example the rate of interest, but many among them are discrete variables that assume only a small 

number of values. Such models fall broadly into two categories: first are those that are a binary 

indicator taking just two values, (0, 1), or categorical indicators with more than two outcomes, for 

example a decision to apply for a graduate program, or a decision to take a bus, train or private car 

to work; the second are the models that are a different mixture of a discrete indicator variable and 

a continuous variable, for example a decision to buy a car, and if so how much to spend. The 

former model is known as a binary, or categorical dependent models; the second as the limited 

dependent (LD) variable Models.  We first examine the dummy dependent models. Count data 

models are employed to analyze discrete data that takes a limited number of positive values. These 

play an important role in many areas of microeconometrics examined in this text, and for that 

reason we employ the Poisson regression with count data.     

3.1 Analysis of Count data 

Count data: non-negative dependent variable when the occurrences of an event have relatively 

few values, including zeros, over a specified interval of time or space, namely, the number of visits 

to a physician over the course of a year, the number of Covid19 patients on a ventilator during a 

day in a local hospital, the number of small business bankruptcies during a week in a city, the 

number of car accidents over a specified segment of a motorway, etc.; the model is extensively 

employed in health economics.  

Poisson regression model  

 The Poisson probability distribution provides the foundation of the count data models. If 

a Y is a Poisson random variable, then its probability density function is  

f (y)=Pr(Y=y)= 
𝑒−𝜆𝜆𝑦

𝑦!
        (3.1.1) 

where the factorial term y!= y.(y-1).(y-2)…1; and λ is the mean of Y. This probability distribution 

has only parameter λ ; a key property of this distribution is that its mean and variance are equal: 
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E(Y)=Var(Y)=λ   (3.1.2) 

The model assumes that the probability of occurrences in different time intervals are independent 

of each other. We parametrize the Poisson function by the exponential mean function as 

E(Y|x)=λ=exp(xβ)         (3.1.3) 

The Poisson equality of the mean and the variance makes the function inherently heteroskedastic. 

The log-likelihood for the Poisson function is maximized numerically by 

ln L(β)= ∑ {𝑦. 𝑥𝑖
′𝛽 − 𝑒𝑥𝑝(𝑥𝑖

′𝛽) − 𝑙𝑛(𝑦!)}𝑁
𝑖=1      (3.1.4) 

Since log of the nominator of (3.1.1) consists of sum of two log terms, and by (3.1.3), log of 𝑒−𝜆 =

−𝜆 ; usually, 𝑙𝑛(𝑦!) is dropped since it does not dependent on𝛽. The prediction of the conditional 

mean of y, given 𝛽�̂� and a selected a value of x0, can then be obtained from 

𝐸(𝑦0̂) =  𝜆0̂ = exp (𝛽�̂�𝑥0) 

Moreover, the probability of a particular number of occurrences can be estimated by inserting the 

estimated conditional mean into the probability function  

𝑃𝑟(𝑌 = 𝑦) =
exp(− �̂�0).�̂�0𝑦

𝑦!
 , y=0, 1, 2, … 

The Poisson model is a deterministic function of the explanatory variables, that is, the model 

produces the same outcome for otherwise identical individuals. 

Marginal effects and interpretation  

The marginal effect of a change by one unit in a continuous explanatory effect x is obtained from 

the conditional mean: E(yi)=λi=exp(xiβ), and the derivative of exponential 
𝜕𝐸(𝑦𝑖|𝒙)

𝜕𝑥𝑖
=

𝛽𝑖 exp(𝒙′𝛽) = 𝛽𝑖𝜆𝑖. The coefficient 𝛽𝑖 measures the relative change in E(yi|x) caused by a one-

unit change in xi. However, if xi is measured on a log scale, then 𝛽𝑖 is an elasticity estimate: 

%∆𝐸(𝑦|𝑿)

𝜕𝑥𝑖
= 100

𝜕𝐸(𝑦𝑖)/𝐸(𝑦𝑖)

𝜕𝑥𝑖
= 100𝛽𝑖%Δxi. That is 100𝛽𝑖 is approximately the percentage change in 

E(yi|x) induced from a unit increase in xi. For a comparison of the exponential with the OLS slope 

estimate of xi, compare the estimate  �̂�iols, �̂�iexp with (𝛽1̂. �̅�).  
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Over-dispersion and quasi-maximum likelihood. 

The Poisson regression is too restrictive because its distribution is in terms of a single parameter 

λ. One consequence, the Poisson regression predicts the probability of zero count very much 

smaller than the actual sample zero observations; known as the excess zero problem. A more 

important deficiency: the Poisson estimated variance is often larger than the mean. This is known 

as the overdispersion problem; overdispersion has a consequence similar to heteroscedasticity in 

the linear regression in that the Poisson MLE remains consistent if the conditional mean is 

correctly specified. However, large over-dispersion results in hugely understated standard errors, 

and a very large overstated t-ratio, hence robust variance estimation is important. The presence of 

over-dispersion can also be evidence of misspecification; over-dispersion leads to inconsistency, 

not just to inefficiency. Estimation by the ML when the density function is misspecified (but the 

mean is correctly specified) is called quasi-LME (QLME); the Poisson MLE and QMLE are 

identical but have different variances; the QMLE uses either heteroskedasticity-robust standard 

errors, or corrects for them. With the latter, the standard errors of the Poisson QMLE must be 

adjusted. A simple method is to assume the unknown variance is proportional to the mean: 

Var(y|x)= σ2E(y|x) ; σ2 > 0       (3.1.5) 

When σ2 =1, the variance is that of the Poisson model; but when σ2 >1, then the variance is larger 

than the mean and hence larger than the Poisson variance, a common outcome in many Poisson 

applications.  

We test over-dispersion by LR statistic, comparing it to the less restricted variance; the statistic is 

known as the quasi-likelihood ratio statistic obtained by dividing LR=2(ℒur - ℒ r) by unrestricted  

𝜎2̂. More specifically, specify overdispersion of the form, given μ as the Poisson density mean, by  

V[yi|xi]= 𝝁 𝑖 + 𝛼𝑔( 𝝁 𝑖) with g(μ)= μ2 or μ (see below). Assuming μ=exp(x’β) is correctly 

specified, the null hypothesis is H0: 𝛼=0, so that V[yi|xi]= 𝝁 𝑖, implying no overdispersion, versus 

H1: 𝛼≠0 or 𝛼>0. Then construct fitted values 𝜇�̂�=exp (x𝑖
′�̂�) and use that to define the auxiliary OLS 

without a constant with 𝛼 as the sole independent variable with 𝚞i random error 

(𝑦𝑖−𝜇�̂�)
2−𝑦𝑖

𝜇�̂�
 =α. 

𝑔(𝜇𝑖)̂
2

𝜇�̂�
+ 𝚞𝑖        (3.1.6) 
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The reported t-statistic for α is asymptotically normal under H0: 𝛼=0 for no overdispersion; the 

same test is valid for underdispersion H1: 𝛼<0, that is if variance < mean. 

 

Alternative Model of Count Data  

There are several important reasons for the desirability of employing a more flexible alternative 

model of count data. First, overdispersion may be due to unobserved heterogeneity which can be 

accounted for by adding a random error term to the Poisson model; such a mixture approach leads 

to a more flexible and widely used negative binominal model discussed below. Second, under and 

overdispersion may arise because the process generating the first event may differ from that 

determining later events, for instance, an initial visit to the doctor’s surgery is the individual’s 

choice, but subsequent visits are the physician’s choice. Third, the Poisson model of independent 

events may be invalid; for instance, the occurrence of one doctor’s visit may make subsequent 

visits more likely. The last two cases violate the independence assumption of the Poisson 

distribution. However, the model is good for the purpose of estimating the mean of the Poisson 

distribution for a certain event even with over-dispersion, but if the research interest requires going 

beyond the first moment, then an alternative model must be employed.   

Negative Binominal Model 

The Poisson model is a deterministic function of the explanatory variables without a stochastic 

error term. Allowing for unobserved heterogeneity by including an error term in the model to 

ensure the parameters are random, causes the variance of the number of occurrences to exceed 

their expectation, consistent with the tendency of count data to display overdispersion. A popular 

way to introduce unobserved heterogeneity into the Poisson model is to specify to have λ= μ.v; 

then,  λ changes randomly rather than deterministically as in the Poisson model, with a stochastic 

error term v >0 independently distributed as a Gamma distribution, and specified to have a mean 

of one and a variance of α . However, μ is a deterministic function of x. By integrating v out of 

this specification, we obtain the Negative Binominal (NB) distribution for the number of 

occurrences, with a randomly determined mean λ, and but a different variance. Assuming α to be 

different functions of λ generates different types of negative binominal models. 
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Let the Poisson model λ to consist of two components as λ=μ.v where μ is a completely 

deterministic function of x, typically μ =exp(xβ), but v > 0 is iid with density g(v |α.). With this 

formulation, different observations may have different heterogenous λ, partly due to a random 

unobserved component. The expected values in this model conditional on the deterministic 

component is E[λ|μ]= μ, that is, the interpretation of the slope parameters remains the same as in 

the Poisson model above. However, the marginal density of y, unconditional on the random 

parameter v but conditional on the deterministic parameters μ and α, is obtained by integrating 

out v (diffentiating the integral with respect to v), resulting in 

h(y| μ, α)=∫f (y| μ, v). g (v | α)dv        (3.1.7) 

where g (v | α) is called the mixing distribution and α the unknown parameter that defines 

the distribution. The integration produces an “average” distribution consisting of a mixture 

of two distributions. If g (v ) is specified to have the Gamma density  

g (v ) =
vδ−1evδδδ

Γ(δ)
,    𝑣, 𝛿 > 0 where 𝛤(. ) Stands for the Gamma function6; with E[v]=1 and 

Var[v]=1/δ, and f (y| λ) to have the Poisson density, then we would specify (3.1.7) as the 

negative binominal with the mixture density given by 

 h(y| μ, α)=∫
𝑒−𝜇𝑣 (𝜇𝑣)𝑦

𝑦!

∞

0
.
𝑣𝛿−1𝑒𝑣𝛿𝛿𝛿

𝛤(𝛿)
𝑑𝑣       (3.1.8) 

 

(3.1.8) can be shown to be the NB probability mass function obtained from a Poisson-Gamma 

mixture represented by 

h(y| μ, α)=
𝛤(𝛼−1+𝑦)

𝛤 (𝛼−1 𝛤(𝑦+1))
. (

𝛼−1

𝛼−1+𝜇
)𝛼−1

(
𝜇

𝛼−1+𝜇
)𝑦      (3.1.9) 

Expressed in logarithmic terms, the log-likelihood of (3.1.9) can jointly estimate the parameter 

vector of the Poisson and the heterogeneity parameter of Gamma distribution using the standard 

ML estimator; for details see Cameron and Trivedi (2005, p.675), or Wooldridge (2010, p. 737). 

The first two moments of NB distribution are   

 

6 In general, x ~ Ga(α, β ) is defined by 𝛤(𝛼, 𝛽)=
𝛼𝛽

𝛤(𝛼)
 𝑥𝛼−1𝑒−𝛽𝑥 with E(x)= α / β and Var(x)= α / β 2. 
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E(y| μ, α)= μ         (3.1.10) 

Var(y| μ, α)= (μ + α μ2)       (3.1.11) 

The NB variance depends on the specification of α as a function of λ, the more popular version 

given here is as a function quadratic in μ is known as the NB2 because that model provides very 

good approximation for many different count data sets, while the version with linear variance= 

(λ + α λ) is known as the NB1 (the NB1 has the drawback of excluding underdispersion, see 

Wooldridge p. 671). Hence, both types of NB allow for overdispersion. Note that with both types 

of NB, the density reduces to that of the Poisson as α→0, demonstrating that the NB is a 

generalization of which the Poisson is a special case7. In exercise Q3.2,  we examine both the 

Poisson and NB2 models applied to a count data set for annually visits to a physician’s office by 

US individuals 65+; the data lacks a  race indicator but we have included a gender indicator as 

illustration.   

3.2 Limited Dependent Variable Models 

Models with discrete dependent variables are typically binary or assume limited categories, for 

instance choices, between two-year, four-year public and four-year private colleges. Such models 

are not adequate to deal with samples that have zero dependent variable for a substantial proportion 

of the sample, but otherwise non-discrete, continuous dependent variable, for example, 

expenditure on tobacco. The models developed for this type of data are called limited dependent 

variable models and they fall into two groups. First are the models for missing data on the 

dependent variables for a subset of the sample, but full observations on all explanatory variables; 

for example, in a tobacco expenditure sample, we may have full observations of relevant 

explanatory variables such as age, earnings, local tax on tobacco of all the individuals in the 

 
7 More Generally, y is the number of random trials, is fixed, and r =r, r+1, . . . ;  n is the number of trials 

required for a “successful” outcome, for example, the  number of visits to a physician’s office in a year, 

with probability 0 <P<1 and r>0, then n ~ NB(r, p) if  r trials are required to achieve r successes. With the 

NB2 probability mas function is 𝑃[𝑦2 = 𝑦|𝑝, 𝑟] = (
𝑦 − 1
𝑟 − 1

)𝑝𝑟(1 − 𝑝)𝑛−𝑟, for which 𝑟 =
𝜇2

𝜎2−𝜇
 and 𝑝 =

𝑟

𝑟+𝜇
,  (the 1st bracket stands for  the number of combinations) of (r – 1) out of (y – 1) combinations.  Driving 

μ and σ from r and p shows the 2nd moment for a model of count data is 𝜎2 = 𝜇 +
1

𝑟
𝜇2. Now if r → ∞, then 

mean and variance become equal and we are back to the Poisson model that rules out overdispersion (above 

α=1/r).  
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sample; only the dependent variable is missing for non-smoking, so we have a censored dependent 

variable. Second are the models of limited dependent variables with missing data on both the 

dependent and the explanatory variables, for example, using a survey of negative income tax, 

consisting of individuals with income below the poverty line, to estimate an earnings equation for 

the entire population. This is an example of a truncated dependent variable.  The models of 

truncated data are harder to implement and perform less effectively than those of censored data. 

Here we examine models of censured data only.   

 Censoring may be from above as with top-coded income surveys where to avoid 

measurement error in top income, or to preserve for anonymity, income surveys typically set 

income above a certain level equal to zero.  This is an example of censoring from above (or from 

the right). However, a more important kind of censoring is when the dependent variable remains 

unchanged at zero with changes in the explanatory variables for a nontrivial portion of the 

population as with non-purchase in a survey of expenditure on motorcars when some with positive 

expenditure may report zero at the time of the survey. The zero observations in this case may be 

simply the result of data collection, but also the outcome of behavior; for example, in a labor 

supply survey, the zeros can be due to desired hours of work, actual hours of work performed, or 

actual work hours for employed and non-employed. Consider  

y=xβ + ε 

where x is a vector of explanatory variables for the unit individual h, and ε a normally distributed 

error term and we only observe yh > 0, in this case its values below zero are unknown. This is an 

example, in a survey of hours worked often contains a substantial proportion of zeroes for some 

of the survey participants.  This is an example of censored from below (or from the left). Suppose 

now we drop y=0 observations and apply the OLS to the censored sample. The estimates would be 

biased and inconsistent because if y > 0, then ε > - xβ and so E(ε | ε  > - xβ) ≠0, that is the OLS 

condition of orthogonality x from ε  is violated; they are correlated. Moreover, inclusion of zero 

observations in an OLS regression as though they are all genuine zeros are also biased and 

inconsistent because the zero/nonzero events do not have equal probability of occurrence with 

non-trivial zero proportion; the OLS estimation does not account for the probabilities for zero and 

positive expenditure in the sample. To resolve the problem, in a classic paper, Tobin (1958) 

proposed maximization of a likelihood function consisting of the product of the purchase and non-
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purchase observations based on a standard normal, homoscedastic error term. For a positive 

purchase, the probability of purchase for each h is given by the height of the standard normal 

density function; for each non-purchase, the probability is given by the integral above the censored 

zero of the standard normal density function; that is, the area under the standard normal cumulative 

distribution. The distinctive feature of the resulting likelihood function is that it is a mixture of 

density and cumulative normal distribution functions. More specifically, the Tobit model (Tobin’s 

probit) is derived from a latent variable model linear in regressors with a normally distributed and 

homoscedastic, additive error term: 

y*= xβ + ε ; ε ~ N(0, σ2) and y* ~ N(xβ, σ2)    (3.2.1) 

the observed y is then defined with the limit observations of the likelihood function L(.)=0 by 

y=  {
𝑦∗        if  𝑦∗ > 0
−         if 𝑦∗ ≤ 0

}       (3.2.2) 

where – stands for  missing observation; no particular value is observed when y* ≤ 0. More general 

censoring schemes from above or both above and below, the two-limit Tobin, are also possible. 

However, normalizing the limit at zero with L(.)=0 is necessary for identification in a linear model 

with an intercept. If L≠0, then β1+ β2x2 + ε > L or (β1 – L)+ β2x2 + ε = 0, so only the difference (β1 

– L) is identified. The application of (3.2.2) to the f*(y) ~ N(xβ, σ2) censored density shows the 

cumulative distribution function of the latent variable y* is  

Pr(y=0)=P (y* ≤ 0)=Pr[xβ + ε ≤ 0]=Φ(xβ|σ)=1 - Φ(xβ|σ) 

Where Φ(.) stands for the standard cumulative distribution function (cdf), the last two equalities 

are scaled by σ for conversion to standard normal distribution, and make use of the symmetry 

property of the standard normal distribution. Hence, for positive observations, the term that enters 

the likelihood function is the normal probability density with E(xβ), and variance of σ2; the full 

likelihood function is the product of the probabilities that the limit observations occur times the 

probability density functions of all non-limit observations: 

L(β, σ2)=∏ {1 − Φ(
𝑥β

𝜎
) }

1−𝑑

x ∏{
1

√2𝜋𝜎
 𝑒− (𝑦−𝑥β )2/ 2𝜎2

}
𝑑

 

where the indicator d=1 if y > 0; the Tobin estimator maximizes the corresponding censored log-

likelihood function correspondingly by 
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lnLN(β,σ2)={𝑑𝑖 ∑ {𝑑𝑖 (−
1

2
ln 2𝜋 −

1

2
ln 𝜎2 −

1

2 𝜎2  (𝑦 − 𝑥β)2)} + (1 − 𝑁
𝑖=1 𝑑𝑖)(1 − Φ(

𝑥β

𝜎
 ))}   (3.2.3) 

The estimates by (3.2.3) are a consistent and efficient; however, the results are crucially dependent 

on the normality and homoskedasticity assumptions of the model; violations of either assumption 

would lead to inconsistent estimates. For example, with heteroskedastic errors, the Tobit estimates 

are inconsistent because E(di)= Φ (
𝑋𝑗

′β

𝜎𝑗
 ); di=1, 2, only when σj

2 = σ2. It is possible to correct for 

heteroskedasticity by weighted least squares if we know its form. Dependence of the consistency 

of the Tobin estimator on the absence of minor deviation from homoskedasticity can be better 

understood in comparison with the OLS. For the latter, the mean and the variance of the error term 

are independent of each other. Therefore, heteroskedastic errors affect only the efficiency of the 

efficiency of the estimates, not its unbiasedness. By contract, the mean and the variance of the 

Tobit model are no longer independent of each other. Heteroskedasticity has the further 

consequence that the estimates are inconsistent. In addition, evidence suggest that bias due to non-

normality in censored data can be substantial. In any case, given the fragility of the Tobit model, 

we should test for its distributional specification. We test by nesting the Tobit within a richer 

parametric model and apply a Wald, LR, or LM test to the restrictions. The LM test is particularly 

simple for testing against heteroskedasticity of the form σj
2 =exp(xβ) in the censored regression. 

The LM test is based on the unadjusted R2 from an auxiliary regression, second stage regression; 

when multiplied by the sample size N, [N* R2], the test has a χ2 distribution. The LR is based on 

the likelihood estimates from both the restricted and unrestricted models and works like an F-test.    

Interpreting the Tobit estimates 

 The slopes of the Tobit latent variable model are β̂ but we are also interested in the marginal effect 

of a change in x on either the regression function of the observed data E(y|x), inclusive of zeros, 

or the regression function conditional on positive observations y>0 , E(y|x, y>0). The slope is 

relatively simple, expressed as the product of the parameter estimate by a scale factor: 

𝜕(𝑦|𝑥)

𝜕𝑥
 = β.Φ (

β𝑋

𝜎
 )      (3.2.4) 

(3.2.4) suggests the means for a rough comparison of OLS and Tobit estimates because the LH of 

it is equal to the OLS slope.  Therefore, to turn this into an approximate Tobit, we must multiply 

it by β̂.  Because Φ(.) values are positive, the sign of the estimated slope identifies the direction of 
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the marginal effect but its magnitude depends on both the coefficient and the cdf. If β > 0, then as 

x increases, the cdf approaches one, and the slope of the regression approaches that of the latent 

variable model. There are two methods for obtaining the adjustment factor; both based on (3.2.4). 

First method involves computing the marginal effect at the average (PEA), that is evaluating Φ(.) 

at Φ(𝛽’�̅�)/𝜎), and then multiply β̂ by this scaling factor. However, the average may be of little 

value if the interest is obtaining some other percentile value or another central value. The second 

is to use the average partial estimate 𝑛−1 ∑ Φ(
β’̂𝑋

�̂�
 )𝑛

𝑖=1  , a factor with values that always fall 

between zero and one. In fact, if y=0 observations are few, APE and AEP will both be close to 

one; and for y>0, the Tobit and OLS estimates will be identical. However, there is also a simple, 

OLS-based alternative to the Tobit estimator that offers approximation for the Tobit MLE based 

on a remarkable result of Greene (1981), and valid for many classes of Limdep models; namely, 

that all OLS slope estimates of censored survey (except the intercept) are biased downward in the 

same proportion. Consequently, the division of the OLS estimates by this factor of proportionality 

corrects the OLS estimates of censored data; the scale factor is approximated by the proportion of 

nonlimit (continuous) observations in the sample. Let 𝜃 = n1/n by such a nonlimit proportion, 

then  β̂= βOLS/ 𝜃 are consistent.  

 The Tobit marginal effect can be broken down into a part due to a change in x for the 

proportion of the population whose y-data is already observed, and that from changes in the 

proportion of the population who switch from y=0 to y>0 as x changes, for example changes in 

labor supply. Formally the two components of a marginal change can be written as 

𝜕𝐸(𝑦|𝑥)

𝜕𝑥
= 𝑃𝑟(𝑌 > 0) .

𝜕𝐸(𝑦|𝑥, 𝑦 > 0)

𝜕𝑥
+  𝑃𝑟 (𝐸(𝑦|𝑥, 𝑦 > 0).

𝜕Pr (𝑦 > 0)

𝜕𝑥
 

This is known as the McDonald-Moffit decomposition of the Tobit marginal effect.    

Two-step Tobit 

(3.2.3) restricts the censoring mechanism to be from the same model that generates the positive 

outcome variable. The case for separating the two processes is strong when we judge that certain 

values occur in frequencies inconsistent with a simpler, one-step Tobit model. A Tobit model that 

allows for the zero and nonzero to be generated by different densities provides more flexibility; 

for instance, we may have one equation for probability of hospitalization, and another for care 
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expenses once admitted. Define a dummy variable d=1 for participants who have observed y > 0 , 

and d=0 for nonparticipants who have y=0. Then a two-part Tobit model is given by 

f (y| X)= {
Pr [𝑑 = 0|𝒙)                                if  𝑦 = 0

Pr[𝑑 = 1|𝑥] 𝑓(𝑦)𝑑 = 1, 𝒙)      if 𝑦 > 0
} 

This is a generalization of a one-step Tobit with a probit (or logit) model, which is  an obvious 

choice for the decision d participation, using a positive value random variable such as log-normal. 

The same explanatory variables may appear in both equations (on the merits of this approach see 

the sample selectivity model examined below).   

3.3 Sample selectivity Models 

The OLS model of consistent estimation is based on the sample being randomly selected; 

whenever a sample is in part determined by the values of the dependent variable, the estimates will 

be inconsistent since the sample is no longer randomly selected. As with the Tobit estimator, the 

key issue is whether selection is based on endogenous variables; the application of OLS to a sample 

determined by an exogenous variable are consistent since if we start with a random sample and 

randomly drop observations, OLS will still be consistent. Selection based on an endogenous 

variable may be self-selection as participants may choose not to participate in the sample activity 

such as supplying labor to the market, or the sample may over-represent those chosen to 

participate. In either case, such samples are not random and consistent estimation requires 

regression models capable of correcting for the sample selection bias. Consider for example an 

earning equation as a function of the individual’s age, education, experience, etc. There are, 

however, different possible mechanisms that transmit the effects of market entry to the wage 

equation. For instance, more capable workers are also more likely to be observed in the labor 

market and earn higher wages; if ability is unobservable, then its exclusion from estimation, as a 

repressor leads to biased estimates. This bias will be more pronounced if there are more zero 

observations for entry than is consistent with the wage model; in a typical labor supply survey, 

zero wage observations are many times larger than observations with positive wage values. The 

sample selectivity bias is an econometric explanation initially proposed for the implausible finding 

that women with small children appeared to have higher wages than those without. The former 

group had a higher shadow price of time and so a higher reservation wage, thus requiring a higher 

observed wage rate before they are observed entering the market. In a regression of wage equation 
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with a sample of working women, the error term, for such households will be higher, incorporating 

unobserved higher reservation wages. The inclusion of this endogenous influence in the regression 

results in misspecification error, making the parameter estimates biased. The solution proposed  to 

correct for the bias is: to compute the expected values of the error term, and use it as an additional 

explanatory variable in the wage equation. If one employs two equations for observed and shadow 

wages, together with an equation for an endogenous ‘amount of work’ variable which equates the 

two wage rates, then this amount is positive when the person is observed to trade in the labour 

market, and non-positive when she is not. Heckman (1974) estimated a system of simultaneous 

equations for this model by the ML method to obtain the expected value of the error term and 

correct for estimation bias. However, in a well-known paper, Heckman (1976) suggested a simpler 

two-stage estimation when the maximization of the likelihood function for selectivity bias proves 

cumbersome. This is the most common selectivity model used and discussed below.       

In the generalized version of this two-stage approach, behaviour is described by two 

regression equations, plus an equation for an endogenous dummy dependent variable describing 

the selection of the households into one of the two regimes, the error term of the latter assumed 

correlated with those of the two regimes.  

𝑦ℎ = 𝛽1
′𝑋1ℎ + 𝑢1ℎ 𝑖𝑓 𝛾′𝑍ℎ ≥ 𝑢ℎ       (3.3.1) 

𝑦ℎ = 𝛽2
′𝑋1ℎ + 𝑢2ℎ 𝑖𝑓 𝛾′𝑍ℎ < 𝑢ℎ       (3.3.2) 

such that 

𝑑ℎ = 1 𝑖𝑓 𝛾′𝑍ℎ + 𝑢ℎ > 0      (3.3.3) 

𝑑ℎ = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 (3.3.4) 

It is further assumed that the three error terms are jointly normal, and hence expectation of each, 

conditional on the other, is linear, and that 1=  (since otherwise  is estimable only up to a scalar 

factor of 𝜎). Subscripts 1 and 2 indicate which of the two regimes or equations an individual 

observation on yh
belongs to. The expectations 𝑦ℎin (3.3.1) and (3.3.2) are given by  

𝐸(𝑦ℎ|𝛾′𝑍ℎ ≥ 𝑢ℎ) = 𝛽1
′𝑋1ℎ + 𝜎1ℎ1ℎ      (3.3.5) 

𝐸(𝑦ℎ|𝛾′𝑍ℎ < 𝑢ℎ) = 𝛽2
′𝑋2ℎ + 𝜎2ℎ2ℎ      (3.3.6) 

where h 1 and h 2  are covariances between u h 1  andu h 2  with uh . Given normality, Heckman (1976) 

shows that the last variables in (3.3.5) and (3.3.6) assume a particular form (depending on whether 

the truncation is from below or from above). This is, 
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  are the standard normal density and cumulative 

distribution functions (where use has been made of the conditional expectation for a truncated 

normal distribution8).  h 1 is known as the inverse of the Mills ratio and  h 2 as its complement. The 

parameters of interest for the selectivity test are h 1 and  h 2 . It is, however, more common to 

estimate (3.3.5) and (3.3.6) as a single equation using all the observations on yh
. 

Noting  𝑝(𝛾′𝑍ℎ ≥ 𝑢ℎ) =  (𝛾′𝑍ℎ) ; 𝑝(𝛾′𝑍ℎ < 𝑢ℎ) = 1 − (𝛾′𝑍ℎ) , we have 

𝐸(𝑦ℎ) = 𝐸(𝑦ℎ|𝛾′𝑍ℎ ≥ 𝑢ℎ). 𝑝(𝛾′𝑍ℎ ≥ 𝑢ℎ) + 𝐸(𝑦ℎ|𝛾′𝑍ℎ < 𝑢ℎ). 𝑝(𝛾′𝑍ℎ < 𝑢ℎ) 

= 𝛽1
′𝑋1ℎℎ + 𝛽2

′𝑋2ℎ(1 −ℎ) + (𝜎2𝑢 − 𝜎1𝑢)𝜙ℎ + 𝜀1ℎ                (3.3.7) 

where conditional expectations given in (3.3.5) and (3.3.6) are substituted to obtain (3.3.7) whose 

error term now has the property that 0 = )( E h1 . The interest in the selectivity bias test centres on 

the combined parameter )  - ( u 1u 2  , conveniently avoiding separate estimates for  u 1 and u 2 . 

A probit analysis over the entire sample in the first stage provides an estimate of  , allowing 

computation of the Mills ratio 
) . ( 

) . ( 




. This is then employed as an additional regressor in the 

second stage for a single equation, once again combining the observations on both sub-samples, 

estimated by OLS. Selectivity bias exists if 0  )  - ( u 1u 2  ; otherwise, we fail to reject the 

hypothesis that selectivity bias exists. Note that in all versions of the selectivity bias models, the 

computation of Mills’ ratio requires observations on the explanatory variables for which the 

corresponding dependent variable has a zero limit, so the procedure is only applicable with 

censored data; not relevant when the sample is truncated. 

In the (3.3.5)-(3.3.6) model, the vectors of X h 1
 and X h 2

 are not necessarily identical and 

can contain variables exclusive to each. If this is not the case, then X = X = X h 2h 1h
 & (3.3.7) 

simplifies to 

𝐸(𝑦ℎ) = 𝛽2
′𝑋ℎ + (𝛽1

′ − 𝛽2
′)𝑋ℎΦ(Υ′𝑍ℎ) + 𝛽2

′𝑋2ℎ(1 −ℎ) + (𝜎2𝑢 − 𝜎1𝑢)𝜙ℎ + 𝜀ℎ  (3.3.8) 

Here the only change in the function is through the scaling effect of the intercept, see Heckman 

(1990) on such varieties of selectivity bias. 

 

     8For zN(0, 1), E[z|z>c]=  (c) / 1-  (c);  (c) measures probability by the area in the standard normal 

 to the left of c, Pr[z ≤ c], hence Pr[z>c]=1- (c) for a constant c. In this case,  (-c)=  (c), and  

1- (-c)=  (c), hence E[z|z> -c]=  (c) / (c); see Maddala (1988, Appendix)for details.  
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If one were to test selectivity with 0  yh
  observations only, but still retain the binary 

function (.) d h , then a probit analysis on (.) d h  provides estimation of  and hence computation 

of inverse Mills’ ratio, h , which is in turn used in the second stage as an additional variable in  

          0 = ) v ( E  0 y  ;  v +   + X  = y hhhhhh
&


      (3.3.9) 

Identification 

The above mode will be poorly identified if an identical vector of variables is employed in both 

entry and in wage equations; therefore, the simplifying assumption that x1=x2 is far more critical 

for the selectivity model than for the two-step model with all independent variables fully 

observable. This results from x1=x2 , (.) in (3.3.9) which would be highly collinear with another 

set of explanatory variables in that equation, namely x2. Given x1=x2, it would be very likely that 

point estimates obtained for (3.3.1)-(3.3.3) will have larger standard errors. This highlights the 

need for additional variation unique to x11 in the probit equation (3.3.1) for more accurate 

estimates. There is therefore, a critical role for employment of one or more exclusion restrictions 

on variables that are included in the probit equation but excluded from the wage equation. With 

x1x2, exclusion restrictions will introduce greater variability across x11 observations to enable 

the model to tell apart the effects of participants and nonparticipants.  

Of course, even with x1=x2, we still have some variation unique to the probit model of entry by the 

nature of its nonlinear functional form and in contrast to the log linearity of the wage equation. 

With this type of exclusion restriction, parameter identification relies solely on functional form 

restriction. If, however, non-linearity is limited rather than pronounced (both equations are 

similarly close to linearity), then identification by functional form would be rather poor; therefore, 

effective selectivity bias test and control often rely on the critical role played by at least one 

exclusion variable blocked from the wage equation and unique to the entry probit equation, for 

example, fixed costs of entering the labor market such as time or distance to and from work, or 

age and age squared.  

Readings 

For textbook discussion, see Cameron and Trivedi (2005, chapters 14, 16, and 20); Wooldridge 

(2010, chapters 17, 18, and 19). Tobin (1958) and Heckman (1976) are the classics on the Tobin 
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and Heckman models; for an application of count data models, see Cameron et. al. (1988); for 

that of the Heckman model, Koohi-Kamali (2021).   
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Chapter 3 Discrete Dependent Variables Exercises 

Q 3.1 

a. For estimating the mean of a nonnegative random variable y, the Poisson quasi-log 

likelihood for a random draw is  

ℓ𝑖(𝜇) = 𝑦𝑖 log(𝜇) − 𝜇,   μ>0 

E[ℓ𝑖(𝜇)] = 𝜇0 log(𝜇) − 𝜇. 

Show that this function is uniquely maximized at μ=𝜇0.  

  

b. The gamma (exponential) quasi-log likelihood is 

ℓ𝑖(𝜇) = −
𝑦𝑖

𝜇
− 𝑙og(𝜇)  μ>0 

Show that E[ℓ𝑖(𝜇)] is uniquely maximized at μ=𝜇0. 

Q 3.2 Download mus17data.dta on the annual number of visits to physician’s office; define a 

global variable for the covariates of docvis: private medicaid age age2 educyr actlim totchr female. 

a. Estimate a Poisson model of docvis regressed on the global list, and obtain the squared 

correlation coefficient between the fitted and observed values of the dependent variable. 

b. Estimate the model in a. by QMLE and test for overdispersion.  

c. Obtain the marginal effects of the explanatory variables in a. 

d. Estimate the equation in a. by NB2, employing ML and QML estimators. 

Q 3.3 Download tobin.dta, regress the Tobin model of aptitude on the variables read and math 

with lower (left) censuring; comment on the outcome.  

Q 3.4 Download mroz.dta. Regress the Hackman model with an indicator for women’s choice to 

work or not as a function of age, education, married and children, and for earnings as function of 

age & education. What variable in the output file controls for the selectivity bias?    
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Chapter 4 Analysis of Panel Data 

Introduction 

Suppose we want to estimate a consumption function, with N=4000 individuals in each of four 

time periods, T=4. If we regress consumption y on income x by OLS by drawing a line through the 

data points, a slope estimate is shown by the line AA in the Figure 4.1 below. Now we can also 

identify data by the cross-section unit for each individual over the four-year period; in this note I 

use “individuals” as a generic term also to cover families, firms, countries, or regions, depending 

on the unit of observation. The figure below identifies four such units, out of the 4000 observations, 

each observed four times, by drawing an ellipse around each individual. The sample contains many 

more ellipses, roughly divided in equal number above and below AA. These individuals have 

different intercepts (the point at which their consumption function curve meets the y-axis). Note, 

however, that the lines through the four data points for each individual are parallel to AA and to 

each other, that is, the slope remains unchanged.  These different intercepts reflect the effects of 

many influences that account for individual uniqueness, or cross-sectional heterogeneity. The OLS 

estimation by the line AA is biased since it ignores heterogeneity unless the omitted influences are 

uncorrelated with the included independent variables. Note that this also implies that the error term 

no longer has a constant variance since it varies within individual clusters over time.  

4.1 Robust time-invariant estimators  

There are two ways to deal with the effects of heterogeneity. The first is to create a separate dummy 

variable for each cross-sectional unit, and estimate the equation with OLS. This dummy fixed 

effects estimator, however, is only possible with a small number of cross-sectional units; with 4000 

such units, we need 3999 dummies, a massive loss of degree of freedom! An alternative method 

that gives the same estimate is to transform the equation so that time-invariant individual 

characteristics are eliminated. This outcome can be achieved by two different estimators, and both 

give unbiased estimates but both also remove all independent variables that remain unchanged 

over-time within the unit, namely, gender or race; not helpful if we wish to estimate their impact 

on the dependent variable. As illustrated by Figure 4.1, within each ellipse, such values remain 

unchanged so their differences from their averages are all zero. 
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Figure 4.1 fixed effects estimator with intercept control excluded variables uncorrelated with x  

 

The second method, called the random effects (RE) model, is designed to avoid the above 

shortcoming of the fixed effects model while allowing for changes in the intercepts across units. 

However, the random effects by different intercepts have a new meaning as though they are drawn 

by random sampling; different intercepts are now random and therefore, treated as a part of a 

composite error term, so that term has two parts, a time-invariant error and the usual error changing 

with time. Since there may well be correlation between the error terms due to their common time-

invariant component, we have to transform the original model so as to eliminate the error 

correlation, similar to the strategy we followed to deal with serial correlation. Just like the solution 

to serial correlation, the transform equation will be nonlinear in parameter and must be estimated 

by GLS to produce efficient estimates. Hence, the RE estimator retains time-invariants and is more 

efficient than the FE or FD estimators, see below.  

 So far, we assumed that problem with the compound error term is the correlation between 

the errors. If, however, the unobservable time-invariant error component is also correlated with 

included explanatory variables, for example, unobserved intelligence may well be correlated with 

completed years of education, then the estimates will be biased even if the transformed equation 

estimates are efficient. The following Figure 4.2 explains this important drawback of the RE 

estimator; the graph similar to the previous one for the FE model but with a notable difference in 

that the common slope, line AA, is no long the same as the individual slopes. The main reason for 

this outcome is the larger intercept for an individual, the larger is the individual’s x, namely, higher 

x cut the y-asis at higher values; hence the OLS overestimates the common slope (more steep than 

individual slopes). The increase in y values is caused for two reasons. First, because of higher x 

values; second because of higher intercept. The OLS attributes both these changes to x. As a result, 

there may be correlation between the composite error term and the explanatory variables, leading 
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to an upward bias in slope estimates. It is therefore critical to employ the RE estimator only when 

the evidence suggests its error term is not corelated to the equation regressors. In that case, the 

random effects model should not be used. The Hausman test is designed to determine if we are 

justified employing the random model or whether we should employ the safer unbiased fixed effect 

method without separate estimates for observable time-invariants such as religion.   

 

Figure 4. 2 Random effects estimator with a positive correlation between x and the intercept.   

  

4.2 Fixed Effects Model  

The first model that remove the time-invariant unobservables is called the Fixed effects model. 

Start with the constant coefficient assumption of the OLS model, namely, line AA above. For 

individuals i=1,2,…N, and periods t=1,2, …T, we have  

𝑦𝑖𝑡 = 𝛽1 + 𝛽2𝑥2𝑖𝑡 + 𝛽3𝑥3𝑖𝑡 + 𝑒𝑖𝑡 ,  iid 𝑒𝑖𝑡 with E(𝑒𝑖𝑡| 𝛽1, 𝑥2𝑖𝑡, 𝑥3𝑖𝑡)=0,  for t=1, 2 (4.2.1) 

Suppose now we abandon the assumption of constant coefficients across individuals and rewrite 

(4.2.1) with changing coefficients across individuals i as 

𝑦𝑖𝑡 = 𝛽1𝑖 + 𝛽2𝑖𝑥2𝑖𝑡 + 𝛽3𝑖𝑥3𝑖𝑡 + 𝑒𝑖𝑡       (4.2.2) 

(4.2.2) is hard to estimates when the panel is short and wide, namely, when we have large cross- 

section samples of individuals followed over a limited number of periods. This is because all the 

variation in (4.2.2) comes from changes over time, so with say five period data, we only have five 

observations to estimate the three parameters in (4.2.2), and the results are likely to be very 

imprecise; typically (4.2.2) requires more than five coefficients to estimate, making the task 

impossible. To proceed with the estimation of (4.2.2) we need to simplify, and a common 

simplification is to assume that differences between individuals result in changes in the intercept 

across individuals alone but their slop coefficient remain unchanged (as in the above Figure 4.1): 
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𝑦𝑖𝑡 = 𝛽1𝑖 + 𝛽2𝑥2𝑖𝑡 + 𝛽3𝑥3𝑖𝑡 + 𝑒𝑖𝑡       (4.2.3) 

(4.2.3) is a Fixed Effects model because it controls for within-individual time-invariant effects, 

or individual heterogeneity, by allowing the intercept fixed effects for the same individuals in 

different time periods, for example the same county or the same household. This model can be 

estimated by two different methods: by the Least Squares Dummy Estimator if the number of 

individuals is small, for example, the number of research universities in Philadelphia, and by the 

Fixed Effects Estimator applicable when the number is large, for example, data on the UN 

recognized list of countries.   

When number of cross-sectional individuals is not small, we must rely on the alternative 

fixed effects estimator.  Start again with the data on individual i over t=1,…T periods as shown in 

(4.2.3) and obtain the average value for each variable over time, still assuming no change in 

coefficient across individuals, only those within-individuals. The “-“ over each variable indicates 

its averaged value  over time.   

y
𝑖
= 𝛽1𝑖 + 𝛽2 x

2𝑖
+ 𝛽3 x

3𝑖
+ e

𝑖
       (4.2.4) 

Then subtract (4.2.4) from (4.2.3), and write the new variables, defined as deviations from the 

mean, with a “~” hat 

~
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~
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2𝑖𝑡
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~
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~
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                                  (4.2.5) 
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= (𝑒𝑖𝑡 − e
𝑖
). 

(4.2.5) is the Fixed Effects (FE) Estimator, also called the Within Estimator because variation 

with each cross-sectional unit over time is controlled; the estimator has several notable features. 

First, the least squares estimates of (4.2.5) are unbiased and consistent in small and large samples, 

and produce identical estimates to the Least Squares Dummy Fixed Effects Estimator without the 

need to include all the dummy variables, resulting in a big gain in degree of freedom. Moreover, 

the two methods produce the same least squares residuals. The most attractive feature of (4.2.5) is 

that unobservable time-invariant variables, those that are constant for each individual, are 

eliminated. Since the unobservable time-invariant effects are the source of the correlation of error 

terms over time, by definition, they become a part of the error term; their removal by (4.2.5) 
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prevents them from affecting the included coefficient estimates. Finally, if we assume the error 

term across individuals are uncorrelated, reasonable if they are randomly selected, then we can 

correct for this type of non-constant error variance by the application of the White, or the Newey-

West methods examined earlier to obtain panel-robust standard errors. However, this comes 

with a cost since taking deviation from the mean across variables eliminates not just the 

unobservable effects, but all time-invariant effects such as race or gender.  This is because the 

deviations from the mean for variables constant over time would all be zero. If estimates are 

required for the effects of such observable time-invariant variables, then we cannot use the Fixed 

Effects model. 

4.3 First-Differenced Estimator  

The second alternative called the First Differenced Estimator (FD), removes the endogenous 

time-invariant unobservables in a panel data series by first differencing all the variables; since the 

time-invariant variables are the same in both period, differencing wipes out all cross-sectional 

endogeneity from the model.  

yit – yit-1= β2(x2it – x2it-1) + β3(x3it – x3it-1) + (eit – eit-1)     (4.3.1) 

Both FE and FD account for individual heterogeneity through an intercept that changes cross-

sectionally; both estimators are valid based on the assumption of strict, or strong exogeneity: 

E(eit | x2it, x3it)=0, t=I, 2, …T 

For the FE estimator. We can also state this assumption for the differenced estimator as  

E[(xjit – xjit-1)(eit – eit-1)]=0, j=1 

To understand the implications of strict exogeneity, simplify the subscripts by highlighting the 

current as 2 and lagged as 1, hence   

E[(x2 – x1)(e2 – e1)]= E(x2
’e2) + E(x1

’e1) - E(x1
’e2) - E(x2

’e1)=0 

The first two terms in the above are zero by the orthogonality condition of the explanatory variables 

and the error term from the same period secured by the iid error assumption. However, that is not 

enough to ensure consistency in this panel context; we must also assume that the orthogonality 

condition between the explanatory variables and the error terms also holds when they are from 
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different periods, that is, between (x1 & e2); (x2 & e1). While it is reasonable to expect the latter 

outcome to hold, it is important to be aware that it does not follow from the standard orthogonal 

error assumption, also Cameron &Trivedi (2005, pp749-50).  

         Since both models have consistent estimates, the question is how we should choose between 

them? The choice depends on the number of time period data availability and on the presence of 

lagged dependent explanatory variables. If T=2, the FD and FE produce identical estimates and 

test statistics regardless of which one we employ (see exercise question 4.1). However, if T > 2 

and large N (narrow and wide panels), the FE and FD estimators differ; since both are unbiased, 

the choice between them is made on the grounds of efficiency. Since unobserved cross-sectional 

effects are typically serially uncorrelated, the FE estimator is more efficient without serial 

correlation and more often employed. However, no serial correlation could be a false assumption; 

for instance, if eit follows a random walk path, there will be a substantial positive serial correlation 

in eit. Then differencing will remove any first-order serial correlation and the FD estimator is a 

more efficient choice. Moreover, if the model contains lagged dependent variables, that is if the 

model is dynamic, then the assumption of orthogonality in different time periods, that is strict 

exogeneity, is violated, and although both estimators are unbiased, the FE estimator has much less 

bias than the FD estimator because the bias in the former does not depend on T but that of the latter 

tends to zero at the rate of 1/T. We shall examine both estimators in the context of dynamic panels 

later. Another difference between the two estimator emerges when panel of T is large relative to 

N. Panels with large T may display spurious co-movement, or be non-cointegrated. The FD 

estimator has the advantage of converting an non-integrated series into a weakly dependent process 

by the application of first differences based on the central limit theorem when T >N. We shall 

discuss this approach in the context of long and narrow panels later in chapter 14. Generally, if the 

estimators give very different results, it is best to report two sets of estimates and test statistics.        

4.4 Random Effects (RE) model.  

The Fixed Effects Estimator captures individual differences by including individual-specific 

intercepts by 1i that are fixed over time. The random effects model extends that notion by 

acknowledging that sample individuals are randomly selected, so such individual time-invariant 

differences are random rather than fixed.  The model implements this notion by a break-down of 
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the fixed intercepts with specification that 1i in (4.2.3) consists of a fixed component representing 

the population average, 1 , and random individual differences from that average, ui. 

ii u+= 11 
         (4.4.1) 

We make the usual assumptions about the individual random effects: it has zero expectation and 

constant variance. Substitute (4.2.1) into (4.2.3)  

𝑦𝑖𝑡 = (
iu+1 ) + 𝛽2𝑥2𝑖𝑡 + 𝛽3𝑥3𝑖𝑡 + 𝑒𝑖𝑡 =

1 + 𝛽2𝑥2𝑖𝑡 + 𝛽3𝑥3𝑖𝑡 + 𝑣𝑖𝑡;  𝑣𝑖𝑡 = 𝑢𝑖 + 𝑒𝑖𝑡  (4.4.2) 

The combined error term in (4.4.2) is now composed of two components, the usual regression 

random effects, 𝑒𝑖𝑡 , and the random individual effects 𝑢𝑖. (4.4.2) is also known as an error 

components model. The errors  𝑣𝑖𝑡 are correlated over time for each individual i, but uncorrelated 

otherwise. The correlation is the result of the common component 𝑢𝑖 to all time periods vit. This 

correlation equals the proportion of the variance in the total error term 𝑣𝑖𝑡 caused by the variance 

of the individual error component  𝑢𝑖 , that is 

 =  𝑐𝑜𝑟𝑟 (𝑣𝑖𝑡, 𝑣𝑖𝑠) = st
eu

u 
+ 22

2




      (4.4.3) 

If the RE estimator is applied when the residual is heteroskedastic or serially correlated, typical 

with AR models), the a FGLS estimator can be employed in first differences after weighing the 

averages by an estimator 𝜃�̂� that approaches unity as the RE estimator gets closer to FE estimator. 

𝜃�̂� provides the correction of inefficient errors by a key OLS transformation consistent estimate of 

𝜃𝑖 = 1 − √𝜎𝜀
2/(𝑇𝑖𝜎𝑢

2 + 𝜎𝜖
2)       (4.4.4) 

 

Testing for random effects. The size of estimated    determines the presence of the random effects 

in the sample. If there is no individual heterogeneity if 𝑢𝑖 =0; then 𝜎𝑢
2 = 0 also, so will the 

correlation from (4.4.4):   = 0. This suggests testing the null for the correlation as 

HO :  𝜎𝑢
2 = 0 vs. HA: 𝜎𝑢

2  >0 

Rejection of 𝜎𝑢
2 = 0 means there are random effects among sample individuals. The Lagrange 

multiplier (LM) test statistic, based on the restricted model of assuming the null is true, tests for 

the presence of random effects. A positive LM test outcome suggests the presence random effects. 
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4.5 Fixed Effects Vs. Random Effects 

If the random error 𝑣𝑖𝑡 = 𝑢𝑖 + 𝑒𝑖𝑡  is correlated with any right-hand variable in (4.4.2), then the 

random effects (GLS) estimates will be biased and inconsistent; for example a person’s ability, an 

unobservable, correlated with an explanatory variable for skill in a wage equation, will be included 

in 𝑢𝑖  .  In this case the Fixed Effects model will remain unbiased and consistent even in presence 

of correlated error terms because the fixed effects transformation by (4.2.5) removes all time-

invariant effects, including the random effects of  𝑢𝑖 . The Hausman test is designed to decide 

between the fixed vs. random models by comparing their common coefficient estimates. The test 

is based on the idea that if there is no correlation between 𝑢𝑖  and the explanatory variables, both 

models will be unbiased and consistent, thus both converge on the true parameter values. 

Therefore, in large samples, the two estimators should be similar. If, on the other hand, there is 

correlation between 𝑢𝑖  and the explanatory variables in (4.4.2), the Fixed Effects model will 

converge on the true parameter values, but the Random Effects converge on some other values, 

and the two estimators will be different.  This idea can be tested for each single parameter by the 

difference between the t-ratios obtained from each model. The Hausman test, however, is a joint 

parameter test comparing all the coefficient estimates from the two models, except the intercepts, 

to decide how close the joint differences between the two sets parameters are to zero. The rejection 

of the null hypothesis suggests using the fixed rather than random effects model. 

4.6 IV for Biased Random Effects Estimates.  

If separate estimates for time-invariant effects are required in presence of the correlation between 

𝑢𝑖 and the explanatory variables, then an instrumental variables estimator called the Hausman-

Taylor estimator should be applied to the random model to overcome the problem of inconsistent 

parameter estimates if the hypothesis of equal coefficient estimates is rejected. This estimator 

works if the number of exogenous time-varying variables is greater than or equal to the number 

of endogenous time-invariant variables. To check this, divide the variables into four groups: 

endogenous time-varying and time-invariant; exogenous time-varying and time-invariant. Since 

the fixed effects transformation in (4.2.5), �̃�𝑖𝑡,𝑒𝑛𝑑𝑜 = (𝑥𝑖𝑡,𝑒𝑛𝑑𝑜 − �̅� 𝑖,𝑒𝑛𝑑𝑜), removes the correlation 

between 𝑢𝑖 and the explanatory variables, �̃�𝑖𝑡,𝑒𝑛𝑑𝑜 is a suitable instrument for time-invariants of 

𝑥𝑖𝑡,𝑒𝑛𝑑𝑜 . Another suitable instrument for time-invariant 𝑥𝑖,𝑒𝑛𝑑𝑜 is �̅�𝑖,𝑒𝑥𝑜𝑔. Note that the gain from 

having consistent IV estimators must be sufficiently large to justify the increased variance 
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associated with the use the IV estimator; first stage t-ratio for the instrument as evidence of its 

strength is informative in this regard and should be regularly reported. 

We conclude this chapter with an example that compares the performance of the classical and 

Bayesian panel data logit estimators as a further exercise about some defining aspects of the two 

approaches to econometrics raised in section 1.5. Table 4.1 shows the classical and Bayesian random 

effects panel data estimates from a Bangladesh panel data survey using a binary variable for womens’ 

use of contraceptive as a function of age, urban-rural residency and the number of children. Although 

the Bayesian panel data estimator can be applied as both fixed and random effects estimators, we 

confine the comparison here to the panel data random effects model because that model can also 

account for intra-cluster correlation in the same cluster because of shared cluster-level random 

effects. The results are presented in table 4.1; the simulation method employed in this application is 

the Gibbs sampler MCMC, see chapter 18.      

Table 4.1 Classical and Bayesian logistic regressions of contraceptive use in Bangladesh (1989) 

C_use Classical logistic regression Bayesian logistic regression* 
Urban 0.7323 (0.1195) 0.7364 (0.1121) 

Age -0.0265 (0.0079) -0.0263 (0.0076) 
1 child 1.1160 (0.1581) 1.1293 (1531) 

2 children 1.3659 (0.1747) 1.3681 (0.1679) 
3 children 1.3440 (0.1797) 1.3404 (0.1774) 
Constant -1.6893 (0.1478) -1.6889 (0.1481) 

*Prior distributions: slope parameters normal (0, 100); variance inverse Gamma (0.01, 0.01) simulated by  

MCMC-Gibbs sampler method; binary C_use=1 for a yes response. 

We note that the priors employed for this example are zero-mean normal prior for the parameters, 

and a noninformative prior inverse gamma, using the MCMC-Gibbs sampler. The Bayesian 

parameters estimates and variance estimates very close, evidently the priors are non-informative. 

Exercise question 4.3 asks you to reproduce the outcome in table 4.1 and comment on the outcome.  

    

Readings 

For textbook discussion, see Pesaran (2015, chapter 26), Cameron and Trivedi (2005, chapter 21); 

Wooldridge (2010, chapter 10). Nerlove (2002) reviews the evolution of panel data analysis.  
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Chapter 4 Analysis of Panel data Exercises 

Q 4.1 Let �̂�FE & �̂�FD denote the fixed effects and first-differenced estimators, respectively. 

a. Show the FE and FD estimators are numerically identical. 

b. Show that the variance matrix estimates from the FE and FD methods are numerically 

identical. 

Q 4.2 Download mus08psidextract.dta. 

a. Fit a Fixed Effects model for log of wage, lwage, as a function of exp, exp2, ed, and wks . 

b. Fit the Random Effects model for log of wage, lwage, as a function of exp, exp2, ed, and 

wks. 

c. Test the Fixed Effects model against the Random Effects model in a. & b. for 

endogeneity 

d. Fit a differenced model to the above data set, compare the outcome with that in a. 

e. Apply the Hausman-Taylor IV estimator to lwage panel to control for potential 

endogeneity.  

Q4.3 Download bangladesh.dta, a subsample of data from the 1989 survey of polled 1,934 

Bangladesh women on their use of contraception.   

a. Fit a standard panel data random effects logistic regression for each district and 

comment on the outcome (random-effects estimator is more useful for modeling 

intracluster correlation, when observations in the same cluster correlate because they 

share common cluster-level random effects). 

b. Fit a two-level random-intercept model bayemh with the corresponding random-effects 

parameters assigned a zero-mean normal prior distribution; apply a relatively weak 

normal (0, 100) prior for urban, age, children and the constant. Moreover, assign a 

noninformative prior igamma (0.01, 0.01) for the variance parameter, using Gibbs 

sampler. 

c. Compare the outcomes in a & b, and commend on the Bayesian random effects 

convergence. 
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Chapter 5 Dynamic Panel Data Models 

Introduction 

Modeling variables that changes over time requires taking account of time lags that often includes 

the effect of their own past lags the drives the current values. A model of a time-series based, inter 

alia, on its own lagged values is called a dynamic model. The autoregressive distributed lag 

(ARDL) model, discussed in chapters 9 and 14,  provides a general method for the inclusion of a 

lagged dependent variable that results in a more parsimonious model with improved forecasting 

performance because it includes lagged variables of both the dependent variable and other 

explanatory variables.  However, the extension of ARDL to dynamic models of panel data analysis 

encounters an important problem that does not exist in the non-panel linear context. Here we 

examine this problem where a T panel series is fixed or “short” in T, that is when N>T.  

5.1 Time-variable panel endogeneity 

Consider 

yit =αi +γyit-1 + xitβ  + εit   ;  i=1, 2, …N, t=1, 2, …, T    (5.1.1) 

where the autocorrelation coefficient γ< 1 to ensure integrated time-series, see chapter 6, and εit  

are independent across i units. The OLS in this context is inconsistent because the error term  

(αi+ εit ) will be correlated with yit-1 since  

yit-1= γyit-2 + xit-1β  +[ αi + εit-1]       (5.1.2) 

and, therefore, correlated with αi. To see this, difference (5.1.1) from (5.1.2) 

yit - yit-1=(γyit-1 - γyit-2 )+(xitβ - xit-1β ) + (αi - αi)+ ( εit - εit-1) or 

∆yit =γ∆yit-1 + ∆xitβ +∆εit       (5.1.3) 

Then yit-1 in ∆yit-1 is a function of εit-1; the latter becomes a component ∆εit , resulting in the 

correlation of ∆yit-1 and ∆εit. This inconsistent estimation problem is not confined to the least 

squares estimator. The demeaned fixed Effects estimator regresses (yit - 𝑦�̅�) on (yit-1 - 𝑦�̅�) and has 

an error term (εit - 𝜀�̅�); yit is correlated with εit; so yit-1 is correlated with εit-1, and therefore both 

correlated with, say  𝜀�̃� (the average over it and it-1 periods), the component of the compound error 
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term because of the common component 𝜀�̅�. Then if the regressor (yit-1 - 𝑦�̅�) is correlated with (εit - 

𝜀�̅�), the Fix Effects Estimator will also lead to inconsistent parameter estimates. Moreover, this is 

so even if αi is modeled as a random effect, γyit-1 will be correlated with αi , and,  therefore, with 

the compound error (αi+ εit ).  

5.2 GMM generated instruments 

A solution is possible if there is at least a 3rd panel available; then although the first 

differences estimator is inconsistent, IV versions of this estimator result in consistent estimates 

because the additional panel provides a valid instrument to the endogenous lagged dependent 

variable. With T=3, we have 

yit-3 - yit-2=(γyit-2 - γyit-1 )+(xit-3β - xit-2β )+ ( εit-3 - εit-2)     (5.2.1) 

and then we can use yit-1 as an instrument for (γyit-2 - γyit-1 )= ∆ yit-2.in the equation by the application 

of 2SLS since there is not component (5.2.1) error term from (t -1) period. In this case, there is one 

instrument for one endogenous variable and the IV leads to just-identified specification. However, 

this solution is inefficient because as T increases more instruments become available that are left 

unused by the 2SlS approach. For example, move (5.2.1) one period forward 

yit-4 - yit-3=(γyit-3 - γyit-2 )+(xit-4β - xit-3β )+ ( εit-4 - εit-3)     (5.2.2) 

Now yit-2 becomes an additional instrument, and, therefore, we have two instruments, yit-1 and yit-2. 

However, the IV application using both instruments lead to overidentified specification because 

there is more than one instrument correlated with a single endogenous variable; in this case 

efficiency requires using all instruments for the differenced equation (5.2.1). Note both single and 

multiple instrument approaches employ instruments in levels for differenced endogenous 

variables. The result is that when the instruments are weak, we can obtain further instruments to 

improve consistency and efficiency by using differenced instruments applied to endogenous 

variables in levels.   

However, identification is clear in a 2SLS with one instrument for each regressor but what 

if we have more instruments than the number of endogenous regressors? Then in a system of 

equations with a moment condition for each regressor we have more equations than the number of 
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unknown parameters and the system cannot be perfectly solved because the specification is then 

overidentified. Such a system of equations can be modelled with a vector of regressors X=(yit, xit)  

Y=Xβ + ε & (ε | z)=0 

where z is a column of j instruments, and j ≥ k regressors; the vector of empirical moment 

conditions EN(z ε) ≠ 0 when  j > k. The problem is then to try to use all moment conditions at once 

so as to minimize the vector EN(z ε) as far as possible. A general solution is to de-emphasize the 

large variances by weighing the moments in inverse proportions to their variances and 

covariances, so instruments with high variances receive a lower weight and those with low 

variances a higher weight. We examined this approach in detail in chapter 2 as the Generalized 

Method of Moments, or GMM for short. 

  The choice of different weight schemes to lower high variance instruments and raise low 

variance instruments in order to minimize the variance -covariance matrix Ω of the error term leads 

to different GMM solutions to the identification problem in the presence of multiple instruments. 

If we assume homoscedastic errors, then Ω = σ2I where I is the identity matrix; the scheme in this 

case is the inverse of σ2, called one-step GMM, that leads to consistent estimation. With 

heteroskedasticity, the GMM requires the application of robust sandwich or cluster-correction 

methods. This two-step GMM can also provide consistency. In this case, given consistent �̂� 

estimates, we either have 

�̂� = �̂� = 

[
 
 
 
  𝑒1

2̂ 0 0

0  𝑒2
2̂ 0

0 0 ⋱ 

    
0
0
0

0 0 0      𝑒𝑁
2̂ ]

 
 
 
 

 

or, in the context of a wide panel (large N), with “clustered” individual patterns of covariance, we 

have  

𝛺�̂�  = 𝐸�̂�𝐸�̂�′= 

[
 
 
 
  𝑒𝑖1

2̂ 𝑒𝑖1
2̂ 𝑒𝑖2

2̂ …

𝑒𝑖2
2̂ 𝑒𝑖1

2̂  𝑒𝑖2
2̂ …

⋮ ⋮ ⋱ 

    
𝑒𝑖1

2̂ 𝑒𝑖𝑇
2̂

𝑒𝑖2
2̂ 𝑒𝑖𝑇

2̂

⋮

𝑒𝑖𝑇
2̂ 𝑒𝑖1

2̂ … …       𝑒𝑖𝑇
2̂

]
 
 
 
 

 

The inverse of  �̂� and 𝛺�̂�  are then employed for the minimization of the variance-covariance of 

the instrument-conditional moments of the error terms.  
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Below we examine the dynamic models based on IV and different GMM weights for Ω. 

These models are all dynamic with time periods of data T small relative to cross-section units N 

(N>T), and unavailability of good outside instruments. Therefore, the only available instruments 

in the dynamic models are internal, that is lags of the instrumented variables.      

5.3 Anderson and Hsiao 2SLS estimator 

yit=αi +γyit-1 + xitβ  + vit   ; vit =(αi+ εit )      

where the error components are assumed independently distributed of each other as αi ~ iid (0, σα
2) 

and where εit  ~ iid (0, σα
2); hence σα

2 remain the same in both terms, that is the model assumes 

homoscedasticity. Taking first-differences will eliminate the unit-specific αi ,   

Δyit = γΔyit-1 + βΔxit + Δvit      (5.3.1) 

However, note that E(Δyit-1Δvit )≠ 0; as a result, applying OLS to this model leads to inconsistent 

estimates. Note that even if εit  is serially uncorrelated, its first difference will be correlated over 

time. Anderson and Hsiao (1981) suggested an IV approach to this problem by noting that since 

E(yit-2Δvit )=0, yit-2 would be a valid instrument for Δyit-1 ; it is not correlated with εit as long the 

latter is not serially correlated, and yet likely to be highly correlated with Δyit-1. Instrumenting by 

Δyit-1 leads to consistent but not necessarily efficient estimates because as the number of T 

increases, so do the available number of instruments, and yet the IV approach does not make full 

use of all instruments to improve efficiency. Moreover, the method ignores the autocorrelation in 

the first differenced errors Δvit that can lead to inconsistent IV estimates for a large T. The Anderson 

and Hsiao estimators based on 2SLS generate instruments in levels and in differences; the 

instruments in levels are usually employed to reduce the loss of degree of freedom since with, for 

example, Δyit-2 is not available until t=4 whereas with yit-2 becomes available with t=3.   

    

5.4 Panel GMM Estimators 

Two common GMM transformations are employed to improve efficiency by making use 

of the all available instruments. One model, known as the differenced GMM, is based on removing 

the fixed effects by differencing and using lag instruments in levels for the endogenous regressors 

in differences. Another, called the system GMM, employs regressors in levels, therefore, retaining 
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the fixed effects, but employs lagged instruments in differences. The difference between the 

differenced and system GMM in their approach to endogenous fixed effects is somewhat akin to 

that between the fixed and random effects models, given that the former removes all time-

invariants while the latter retains the time-invariants; except that the dynamic panel models depend 

on internal lagged instruments in levels or in first-differences. The time periods of the panel have 

to have at least t=3 to generate instruments in levels and t=4 for differenced instrument.    

5.5 Arellano-Bond Two-step Estimator with Instruments in Levels 

This model employs the orthogonality conditions between Δyit-1 and εitt to obtain additional 

instruments and employs the GMM approach using all moment conditions. Let us lag (5.3.1) as 

(yi3 – yi2) = γ (yi2 – yi1) + β’Δ xi3 + Δvi3 

(yi4 – yi3) = γ (yi3 – yi2) + β’Δ xi4 + Δvi4 

    ….     (5.5.1) 

(yiT – yiT-1) = γ (yiT-1 – yiT-2) + β’ΔxiT + ΔviT 

In the first equation, the valid instrument for (yi2 – yi1) is yi1, since this instrument is correlated 

with (yi2 – yi1) but uncorrelated with Δvi3. In the second equation, the valid instruments for (yi3 – 

yi2) are yi1, and yi2, and in the Tth equation, the valid instruments are yi1, and yi2, …, yiT-2. An 

additional instrument becomes available with each additional time period. Since the Δxii are 

assumed exogenous, they act as their own instruments. Thus, the number of available moment 

conditions is [T.(T-1)]/2 given by 

E[yis (Δyit -γΔyit-1 - β
’Δ xit )]=0,  s=0, 1,2,…, t-2; t=2, 3, …, T. 

This method is known as the two-step GMM. The remaining problem is serial correlation in the 

transformed error terms Δvit. To deal with serial correlation, this approach applies GMM to 

observations stacked for N different groups. However, Blundell and Bond (1998) show that the IV 

and GMM estimators deteriorate as the variance of αi increases relative to the variance of vit, or 

when γ ≈ 1; it can be shown that instruments in levels yit are then weakly related to those in 

differences of Δyit . Furthermore, when T is not small, as T→∞, the number of GMM orthogonality 

conditions r=[T.(T-1)]/2 tends to infinity. Finally, the consistency of this approach depends on 

serially uncorrelated errors (Δvit Δvit-2). With serially correlated errors, the GMM approach loses 

its consistency. For this reason, it is suggested that the application of this approach be accompanied 
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by testing for higher second and higher-order autocovariances; note that the first-order negative 

serial correlation in (5.5.1) is expected and uninformative.   

 One weakness of the differenced transformation is that it magnifies data gaps in 

unbalanced panels. For example, if yit is missing, then both Δyit and Δyit+1 are also missing. 

However, there may be missing data for the entire time period for all variables when the panel is 

irregularly spaced, for example with a two-period interval, then a five-period interval, etc9. A 

second common transformation recommended by Arelleno and Bover (1995) and known as 

forward orthogonal deviations, is to subtract all available future observations of a variable from 

its contemporaneous one. In order to overcome the problem with unbalanced panels, this method 

minimizes loss of data by transforming a variable w as  

wit+l =cit (wit – ∑ 𝑤𝑖𝑡𝑙>𝑡 ) 

where wit stands for the unbalanced-panel-corrected yit, and cit is the scale factor equal to 

√𝑇𝑖𝑡/𝑇𝑖𝑡 + 1. That is, the method subtracts the average of all post observations of a variable 

beyond the missing period, no matter how many gaps in the data, thereby minimizing data loss.  

5.6 Blunder-Bond System GMM estimator with differenced instruments. 

We note that possible correlation in yit is not only with yit-1 but also αi; each gives a different 

interpretation of correlation over time. Assume for simplicity β, a pure AR(1) model   

yit=αi +γyit-1 + εit, 

then 

E(yit | αi , γyit-1)= αi +γyit-1 and Cor(yit , γyit-1| αi)= γ , 

that is conditional on αi. This is a standard AR(1) model of yit  solely determined by yit-1. However, 

because αi is not observed, we only observe E(yit |yit-1)= γ yit-1+ E(αi |yit-1); therefore  Cor(yit , γyit-1) 

≠γ , and two possible reasons emerge for the correlation between  yit  & yit-1. When the causal 

relationship is from yit to yit-1 is large, the individual effect αi ≈ 0 and Cor(yit , γyit-1) =γ is the true 

state dependence outcome when σ2
α is small relative to σ2

ε. However, due to unobserved 

heterogeneity, there will be correlation Cor(yit, yit-1)= σ2
α/( σ

2
α + σ2

ε )≠ 0 even if γ=0. The first 

 
9 A recent study by Millimet & McDonough, (J. A. Econometrics 2017) examines correction for this 

type of missing panel data.  



 65 

suggests a panel variable is driven by its own past values, while the second suggest important 

variables excluded from the model. Such circumstances lead to weak instruments. Blundell and 

Bond (1998) proposed an alternative model based on imposing restrictions on the distribution of 

the initial values yi0 that allow lagged differences of yit  as instruments in the levels equations. The 

restriction turns out to be important when instruments perform poorly, that is when γ≈ 1, or when 

σ2
α/σ

2
ε is large since in such cases, lagged levels are weak instruments in the differenced equations. 

Consider the general γyi0 = αi /(1+γ)+ vit,  i=1, 2, …, N; based on the assumption that E(Δyit αi)=0. 

The condition states that the deviations of the initial (independent of t) values from αi /(1+γ) are 

uncorrelated with the level of  αi /(1+γ) itself. To secure this outcome, we further assume that  

E{[yi0 - αi /(1 +γ)] αi}=0        (5.6.1) 

Provided that this last condition holds, the following T-1 additional moment conditions also 

become available. 

E[(yit -γ yit-1) Δyit-1]=0, for t=2, 3, …, T.      (5.6.2) 

The employment of this estimator, known as System GMM, when either γ is close to 1 or when 

σ2
α/σ

2
ε is large, leads to substantial gains compared to the Two-Step GMM, especially when the 

instruments are weak.  

Arellano and Bover (1995) suggested an alternative to the Arellano-Bond differenced 

instruments approach to dynamic panel bias; further developed by Blundell and Bond (1998). 

Instead of transforming the equation by differencing to remove the αi fixed effects, this approach 

relies on instruments defined by transformed lag differences that are exogenous to the fixed effects. 

Using again wit for the unbalanced panel correction yit , if we can assume that E(∆wit μi)=0 for all 

i and t (if E(wit μi) does not change over time), then ∆wit-1 is a valid instrument for the variables in 

levels, that is, given the compound error vit=(ui εit),  

E(∆wit-1 εit)= E(∆wit-1 μi) + E(wit-1 vit) - E(wit-2 vit)=0 + 0 - 0 

Therefore, while the Arellano-Bond level instruments are orthogonal to the differenced variables, 

the Blundell-Bond differenced instruments are orthogonal to the level variables. More generally, 

if w have predetermined (exogenous and lagged endogenous) values, then ∆wit is also a valid 

instrument since E(wit vit)=0. Note that in unlike the differenced GMM that removes all time-
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invariant variables from the model, this alternative approach includes the time-invariants since the 

model is in levels; however, asymptotically the time-invariant variables are not affected by their 

inclusion since all variables are assumed to be orthogonal to the fixed effects.   

 

5.6 Specification tests for panel Serial Correlation and Overidentification 

In both approaches, however, the validity of the instruments depends on the absence of serial 

correlations because wit-1 and wit-2 with past and contemporary errors, hence may correlate with 

future errors. The compound error term, vit, is certainly autocorrelated due to its time-invariant 

component; the estimators are designed to remove the fixed effects. However, the error 

autocorrelation may be due to εit , the time-varying component remains a potential problem that 

makes vit autocorrelated of order 1, that is the differenced error term ∆εit = vit - vit-1, is serially 

correlated because vit-1 is a component of both Δvit and Δvit-1, etc. If this is the case, then the 

instrument set must be confined to lags 3 or more of y, assuming there is no 2nd order serial 

correlation. The fixed effect autocorrelation aside, we can test for serial correlation in error 

differences. We can ignore the order-1 negative serial correlation between ∆vit and ∆vit-1 because 

both share vit-1 as uninformative. To check for serial correlation in levels, Arellano and Bond 

suggested testing for order-2 correlation in differences, that is, to test for serial correlation in the 

vit-1 in the ∆vit-1 with the vit-2  in the ∆vit-2; generally test for serial correlation of order k in levels by 

checking for correlation of order k+1 in differences. This solution for serial correlation would not 

work for the differenced errors since these are dependent on many forward lags. However, as long 

as none of the regressors depend on future disturbances, the test remains valid for OLS, 2SLS, and 

any GMM panel regression, ruling out error correlation across individuals. 

The other remaining issue is the test for valid instruments with the over-identification 

specification. When the number of moment conditions exceeds the number of parameters, r>q, the 

model is over-identified, since more orthogonality moment conditions are employed than required. 

Under the null hypothesis of the joint validity of moment conditions, the vector of empirical 

moments for instrument orthogonality is randomly distributed around 0. A Wald test can check 

the hypothesis. Sargan (1958) and Hansen (1982) suggested a frequently employed Wald 

overidentification restriction test, known as the J-statistic that is distributed as χ2
(r-q) for the number 

of overidentified restrictions (r - q), for models estimated by the GMM.  J-statistic larger than the 
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corresponding critical values means rejection of the hypothesis that the moments are supported by 

the data; suggesting that at least some moment conditions are unsupported (invalid). The test can 

also be applied to investigate an additional vector of moments have 0 means, and therefore, can be 

included in the moment conditions to improve inference. It should be noted that when T is large, 

using too many moment conditions results in the Sargan-Hansen overidentification results in a test 

with a very low power. 

5.7 SURE panel Estimator: Long & Narrow 

Introduction 

These are the panels with limited cross-sectional units on which there are long time-series sets of 

data are available. With Long and narrow panels with a narrow G cross-sectional units g=1, 2, …, 

G and time-series over t=1, 2, …T periods, we have a system of g-equations over t periods, usually 

with the same vector of explanatory variables, as  

Ygt= αgXgt + μg 

If there is contemporaneous correlation between μg s, then we must estimate this g-equation system 

of equations together to exploit the correlation to obtain improved estimation accuracy.  

Suppose we have to estimate two different investment function for two different private banks 

over a 30-year period; there are several ways to estimate such a function as a system of two 

investment equations in order to obtain improved estimation efficiency: 

1- If we assume the parameter coefficients are the same for all two equations, we could 

just pool the data and apply OLS to a single equation with the same coefficients for all 

three banks. 

2- It might be more plausible to assume the coefficients to be different for each bank. 

Then we add two dummies and their interactives with the explanatory variables, and 

once again estimate the function with an application of the OLS to a single equation.  

3- Further plausibility might come from assuming different slopes and different variances, 

estimates of the error terms for each of the two equations. Then we could apply GLS to 

a single equation for both banks that takes care of heteroeskadasticity of the variances, 

assuming no contemporaneous correlation between the two error terms.  
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4- Moreover, we could allow the two error terms to be autocorrelated (serial correlation) 

within each equation, but uncorrelated across equations, and apply FGLS or Newey 

estimators to a single equation.   

5- Finally, we could relax the assumption further by allowing contemporaneous 

correlation among the two error terms, that is, allow the error term for the first bank 

equation to be correlated with that of the second bank in the same time period. In our 

example, for instance, both banks are similarly influenced by the change in the 

economic outlook of the country in a given year. Usually, the correlation between 

different time periods are assumed zero, namely, no serial correlation. It would then be 

necessary to estimate a system of two separate equations together by GLS, using an 

estimation of the covariance between the two variances: Cov(e1 e2)= σ≠0, i.e. no 

contemporaneous correlation. The estimator employed in this case is known as the 

SURE (seemingly unrelated estimation), the main topic of this section.   

6- In each 1-5 cases, we must test the relevant assumption to justify the chosen estimation 

model.  

 

i. Panel Exogeneity Assumption 

What kind of exogeneity assumption we use is critical for the estimator choice with panel data 

sets. The simplest is to assume contemporaneous exogeneity of Xt; that is a weak restriction that 

Xt and μt are uncorrelated in the same time period t:  

E(μt|Xt)=0, t=1, 2, …T.      (5.7.1) 

A stronger assumption, called sequential exogeneity, is that all current and past explanatory 

variables are uncorrelated with μt: 

E(μt|Xt, , Xt-1, … Xt,)=0, t=1, 2, …T.     (5.7.2) 

This implies that E(yi|Xt, , Xt-1, … Xt,)= E(yi|Xt)= Xtβ, that is no lags of Xt are required to obtain the 

expected value of Yt.  

A much stronger exogeneity assumption is that μi has zero expectation conditional of all variables 

in all time periods, including future periods. 
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E(μt|X1, , X2, … Xt,)=0, t=1, 2, …T.     (5.7.3) 

Called strict exogeneity, this assumption excludes any correlation between the error term and all 

explanatory variables in all time periods, including future time periods. Strict exogeneity is false 

if the equation contains lagged dependent variables, therefore, assumption (5.7.3) fails. Such an 

equation is a common feature of dynamic models of panel data with lagged dependent variables as 

regressors. For example, suppose the vector of explanatory variables Xt=(1, yt-1), so  that 

E(μt|X1, , X2, … Xt,)= E(μt|Y0, , Y1, … Yt-1,)= μt ≠0 for t=1, 2, …T-1, because μt=(Yt – β0  -  β1Yt-1) 

  Even without lagged dependent explanatory variables, strict exogeneity fails. For example, 

consider a finite distributed lag model of poverty (Pt) as a linear function of current and lagged 

welfare expenditure (Wt-1).  

Pt=θt + δ0wt+δ1wt-1+ut 

where θt represents a time effect. Then if welfare changes with Pt-1 as  

Wt=ηt + ρ1Pt-1+et       (5.7.4) 

(5.7.4) would violate strict exogeneity if ρ1≠0 because Wt+1 would then be affected by ut. Assuming 

that Xt is fixed in repeated sampling with panel data is the same as the classical model assumption 

of strict exogeneity. However, panel data analysis by SURE does not contain lagged dependent 

explanatory variables, see chapter 14 for that kind of model.     

The SURE Estimator employs different variances for each equation in order to estimate the 

error covariance in each period; then adds them up and corrects the sum for loss of degrees of 

freedom (T – the number of explanatory variables). Using the extra information provided by the 

estimated covariance, the SURE estimates a system of equations, each with different slopes and 

different correlated error variances for covariance, with lower standard errors to improve 

efficiency. 

Following steps are involved in the SURE procedure: 

1-Each equation is separately estimated by OLS 

2-Estimated variances are employed to estimate the covariance. For a two-equation example 

above, that is 
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𝜎12 =
1

√𝑇 − 𝐾1√𝑇 − 𝐾2

∑𝑒1̂ 𝑒2̂

𝑇

𝑡=1

 

where K1 and K2 are the number of parameters (excluding the intercept) and 𝑒1̂ &  𝑒2̂ ate the 

estimated standard errors.  

3-SURE uses estimates from step 2 to estimate a system of equations jointly by the FGLS method. 

Prior to the employment of SURE estimator, it is necessary to carry out a test of Ho: σi
2=σj

2  with 

i ≠ j for a significant differences between the variances. This can be decided by a two-tail Goldfeld-

Quandt. The test assumes group-wise heteroscedasticity such that 𝜎𝑖
2 = 𝜎2𝑥𝑖

2, e.g. for income as 

xi, rank the observations by x, and then split them into low and high xi and compute the F test 

statistic as  

F(n1-k, n2-k)=
𝑒1̂𝑒1/𝑛1−𝑘

𝑒2̂𝑒2/𝑛2−𝑘
. 

If we cannot identify xi, then an alternative test is the LM Breusch-Pagan tests based on  

𝜎𝑖
2 = 𝜎2(𝑎0 + 𝑎′𝒛) 

with a vector z of independent variables; with this test statistic, the model is homoscedastic if a=0, 

Greene (2000, pp. 509-510). 

ii. When the SURE has no efficiency advantage over the OLS 

There are two situations under which the efficiency gain from the SURE is no more than that 

obtained from the least squares:  

1-if there were no contemporaneous error correlation, then there would be no links between the 

separate equations, and hence no gain in efficiency by estimating a system of equations together 

by the SURE; the results would be identical to those obtained by the OLS or FGLS equation-by-

equation estimation. 

2-Somewhat less obvious, if the same explanatory variables with the same observations appeared 

in all separate equations, then the OLS and SURE would produce identical estimates even if each 

equation has a different error variance; again, no gain in efficiency by the SURE compared to the 

OLS., Greene (2000, pp. 616-17). If the explanatory in each equation were different, then a test 

would be required to see if the correlation between errors significantly differ from zero when 
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estimated jointly by SURE compared to separately by OLS; if so, then SURE simultaneous system 

of equation estimation would improve efficiency over the OLS separate estimation. A variance- 

covariance ratio test statistic ratio must be computed to decide the outcome. For a simple two-

equation system, for example, the test computes r2
12= σ2

12 / σ
2

1*σ2
2 to test Ho: σ12 =0; this test has 

a LM=(T* r2
12 ) test statistic distributed as 𝛘2

(1) ; more generally with a  m-equation system:  

Ho: σ12 =σ13 = σ23 =…σlm =0 & 𝛘2
(M) has test statistic  

LM=T( r2
12 + r2

13 + r2
23 …+ r2

lm )=T∑ ∑ 𝑟𝑖𝑗
2𝑖−1

𝑗=1
𝑚
𝑖=2 . 

3-One advantage of the SURE estimator is that it allows testing for cross-equation coefficient 

restrictions in different equations. in this case SURE is still useful even if the explanatory variables 

were the same because the standard F-test can only test for coefficient restrictions within the same 

equation, not across different equation. To test a joint hypothesis across different equations 

requires estimating a variance matrix of coefficients to obtain covariance estimates from different 

equations; the SURE preforms this task automatically, computing F or Wald statistics. 

As an example of using the SURE to test for cross equation restriction, consider a two-equation 

model 

4- y1=γ10+γ11x11+ γ12x12+α1x13+α2x14+u1    (5.7.5) 

5- y2=γ20+γ21x21+γ22x22+α1x23+α2x24+u2    (5.7.6) 

Therefore, α1 & α2 are restricted to be equal in both equations. We can redefine the vector of 

parameters β as β=(γ10, γ11, γ12, α1, α2, γ20, γ21, γ22)/; then we choose Xi as the (2 x 8) matrix 

corresponding to  

Xi = ( 
1 𝑥𝑖11 𝑥𝑖12

0 0 0

  𝑥𝑖13 𝑥𝑖14 0
𝑥𝑖22 𝑥𝑖23 1

0
  𝑥𝑖21

0
 𝑥𝑖24

 ), 

where𝑥𝑖11 and 𝑥𝑖12 are set equal to zero in the second equation because they are specific to the 

first equation and each equation intercept is set equal to 1, etc. Xiβ then leads to (5.7.5) and (5.7.6). 

In this case, the unrestricted model is one with its own parameters, and its estimated variance-

covariance matrix employed to obtain the restricted estimates. 
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Readings  

For textbook discussion, see Pesaran (2015, chapter 27), Cameron and Trivedi (2005, chapter 22). 

Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998) are papers 

on the short-span panel data models; Zellner (1962) proposed the SURE model.  
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Chapter 5 Dynamic Panel Data Models Exercises 

Q 5.1 Consider a dynamic panel set up in which lagged values of the dependent variable are 

included as covariates. 

a. Explain why the OLS, within fixed effects and first-differenced estimations are all 

inconsistent. 

b. Explain and write down in mathematical terms the solutions of Anderson-Hsiao and 

Arellano-Bond to this problem. 

c. Explain the differences between these two methods in estimation results.  

Q 5.2 Download mus08psidextract.dat. 

a. Apply the Arellano-Bond gmm estimator to a pure time-series AR(2)of pure time-series 

model of lwage, employing robust standard errors; test the results for 2nd & 3rd order serial 

correlation and account for the number of instruments.    

b. Apply the Arellano-Bond estimator to a AR(2) model of lwage as a function of pre-

determined lagged wks, endogenous ms & union, and exogenous occ south smsa & ind. 

Keep the number of instruments for lagged dependent limited to 3, employ robust standard 

errors, account for the n umber of instruments used, and test for 2nd & 3rd order serial 

correlation and for overidentification.  

Q5.3 Apply the Blundell-Bond/Arellano-Bover model to the same model as Q5.2, but this time 

with differenced instruments. Comment on the outcome   

Q 5.4 Download grunfeld2.dta. This data set contains two firms, GE & WE, each with 20 time-

series observations on the values of each firm investment, inv, stock market values, v, and capital 

stocks, k, of each firm.   

a. Estimate a pooled regression equation for inv as a linear function of v & k, and test for 

coefficient equality using a dummy version of the equation.  

b. Test the variances of each firm’s equation for equality, then reshape the data set as a 

long panel data and estimate the model by SURE.  

c. Obtain the estimated variance/covariance matrix of the residuals used by SURE. 
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 Chapter 6 Forecasting with AR, MA Processes 

Introduction 

A substantial part of time-series analysis deals directly or indirectly with forecasting. Forecasting 

of a time variable relies on two models of forecasting: either we explain change in the variable in 

terms of its own lagged values (autoregression), or in terms of the lagged values of the error terms 

of an autoregressive equation (moving average), or a combination of both. Forecasting by these 

processes must meet the conditions for stability and select the optimal number of lags to be 

effective. In this chapter we examine such conditions, and define the moments of these two key 

processes, and compare their forecasting performances.   

Basics of Forecasting  

i. Loss Function 

A loss function quantifies what is a “good” forecast. Example: given four demand outcomes, in 

two we make the correct inventory decision, and in the other two incorrect inventory decision. 

There are losses involved in such decision, for example if you decide to keep a low inventor but 

demand turns out to be high. Note that the loss can be symmetric as here, or asymmetric, if the 

cost of lost sales is bigger than the cost of unneeded inventory. The losses involved lead to similar 

losses in the forecasts on which inventory decisions are made.  

  Define loss as e=y – y_hat . Then the quadratic loss function  

2L(e) e=  

This function is symmetric around the origin; increases at an increasing rate on either side of the 

origin. Thus,  larger errors are penalized much more heavily than small errors.  

Quadratic Loss 

 

Another symmetric function is the absolute error loss is: 

L(e) | e |=  
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This is also a symmetric function with increasing absolute loss on either side of zero but the loss 

increases at a constant (linear) rate with the size of the error.  

Absolute Loss 

 

An asymmetric loss function may be more relevant to decisions. Here, negative forecast errors are 

less costly than positive errors: 

Asymmetric Loss 

 

In finance we may be interested in direction of change in forecast rather than its size, that is the 

forecast variable is discrete rather continuous (as defined by  y – y_hat). 

ˆ0,  if sign ( ) sign( )
ˆ( , )

ˆ1,  if sign ( ) sign( )

 = 
= 

  

y y
L y y

y y

 

We obtain optimal forecasts by minimization of expected loss of a loss function.  

ii. The Forecast Statement 

We most frequently work with point estimates because density forecasting involves the possibility 

of incorrect distributional assumption, and point forecasts are easy to understand and may be used 

to guide action. Point forecasts are those  forecasting next year’s GDP; interval forecasts are when 
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we forecast the range of values with a certain probability. The forecast horizon is the number of 

periods between now and the forecast date and can change depending on the frequency of 

observations. A one-step forecast with monthly data is one month ahead; with quarterly data, one 

quarter ahead, and in general, a h-step ahead forecast, is a h-step ahead forecast at time T is a 

single T+h value, and h-step ahead extrapolation forecast at time T is a set of T+h values as shown 

here for T+4. In forecasting we can use univariate information set, that is the historical values of a 

series y up to and including the present; or, use a multivariate information set including an 

additional a set for x variables potentially related to y.  

uni var iate

T T T 1 1{y , y , ..., y }− =  

multi var iate

T T T T 1 T 1 1 1{y , x , y , x , ..., y , x }− − =  

The simplest, parsimonious models tend to preform best in out-of-sample forecasts in finance 

because: simple models have more precise parameter estimates, are easier to communicate, and 

reduce the scope for data mining, obtaining a model that fits the historical data very well, but 

preform very poorly in out-of-sample forecast because it is estimated with unusual features of past 

data with no relationship to the future forecast. The Parsimony Principle maintains that smaller is 

often better. 

iii. Deterministic Trend 

A Trend is a slow, long-run evolution in the forecast variable. A Deterministic Trend changes in a 

perfectly predictable manner while a Stochastic Trend changes randomly over time, the former 

displays a long period of increase followed by a long period of decrease. An example is the US 

unemployment rate. Some series have an obvious upward or downward trend, so the path should 

include a “drift” term for an improved forecast (if <0 then downward tendency, if >0 then upward 
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tendency, such as the  log of US GDP). This may require fitting different time-trend to different 

data sets, for example for a linear trend for unemployment as a function of time 

Ut=0+ 1TIMEt.→ (
0̂ ,

1̂ )=min
=

T

t 1

(Ut-0- 1TIMEt)
2. 

iv. Selection of Forecasting Model 

We select a forecast model based on minimizing its forecast error. Let us exclude the last period t 

from the sample. The model selection can be based on the smallest out-of-sample 1-step-ahead 

(predicted) mean squared error (MSE):
T

e

MSE

T

t

t
== 1

2

 , where T is the sample size and  

et= (yt - ŷ t), and ŷ t=
0̂ +

1̂ TIMEt  Since we apply the same sample size to all trend models (linear 

or quadratic) above, minimization on the basis of MSE is the same as minimizing the sum of 

squared residuals (numerator of MSE); or similarly, as maximizing R2.  

 Should we select the forecast model on the lowest MSE, or highest R2?  Note MSE cannot 

increase as we add more trend terms to the model, just as R2 cannot fall, yet these additional trend 

terms may be irrelevant, resulting in over-parameterization (data-mining). A high R2 may result 

in too complex models with very good in-sample fit, but this practice often results in poor out-of-

sample fit. The consequences are overt underestimation of in-sample MSE and therefore biased 

out-of-sample forecast estimates because MSE or R2do not penalized for the inclusion of additional 

trend terms, namely, for the loss of degree of freedom. There is thus a trade-off between good fit 

and the number of variables included. Good criteria for model selection should be based on such 

an optimal trade-off.   

 We know that adjusted R2 does correct for loss of df, and that suggests a penalizing factor 

for the in-sample MSE for loss of df and obtaining 𝑠2, the MSE corrected for df as the square of 

the standard error of the regression: 
kT

e

s

T

t

t

−
=


=1

2

2  = {
)/(1

1

Tk−
}

T

e
T

t

t
=1

2

where k is the number of 

parameters in the trend model, and rewritten with a separate the term inside the last (curly) to make 

explicit the penalizing factor employed. Minimizing s2 is then equivalent to maximizing �̅�2=1 – 
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s2 / [
=

−−
T

t

Tyy
1

)1/()( ] obtained from unadjusted R2 by division of the nominator by (T-k) and the 

denominator by (T-1). Note since the denominator of 
2R depends only on the data, minimization 

of s2 amounts to the maximization of
2R .  

v. Akaike & Schwarz Information Criteria  

The penalizing factor for s2 is a function of k/T. Two other model selection criteria also defined as 

functions of k/T are: 

AIC=e(2k/T)

T

e
T

t

t
=1

2

 or ln(AIC)=ln  (
T

e
T

t

t
=1

2

)+ 2(k/T); and 

SIC=T (k/T)

T

e
T

t

t
=1

2

 or ln(SIC)= ln(
T

e
T

t

t
=1

2

)+ (k/T)ln(T). 

Note that for both AIC (Akaike information criterion), and BIC or SIC (Schwarz information 

criterion), the first term (MSE) becomes smaller as extra variables are added, but the second term 

becomes larger to penalize for extra variables. In fact, all three have the general form of “MSE 

scaled by a penalty factor” that is a function (k/T). We can thus compare model selection in terms 

of penalty severity. The difference between ln(AIC) and ln(SIC) hinges on the difference between 

2 and ln(T), ln(T)> 2 for sample sizes T>8 since ln8=2.08 v. 2 for AIC. Therefore, even with 

moderate sample size of 10 or more, SIC penalizes additional variables more severely than AIC.  

In any case, the second term in AIC is not large enough to ensure the correct number of polynomial 

terms even in large samples, so AIC (and s2) is not consistent. This can be seen in Figure 6.1 as all 

three are functions of k/T, so the penalty rises with increase in k/T (from 0 to 0.25 for a given 

sample size of 100), but more slowly with s2, somewhat faster with AIC but very sharply  

 

Figure 6.1 Degrees-of-Freedom Penalties with Various Selection Criteria 
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with SIC as the sample size increases; so s2<AIC<SIC. Usually, AIC and SIC both select the same 

model, and if they lead to different models, the recommendation is to select the more parsimonious 

model based on the lowest SIC. However, note that such comparisons can only be made for models 

with the same dependent variable, e.g. either y or ln(y). Finally note that although we employ AIC 

and SIC here for deterministic models, these play a more important roles in stochastic forecasting 

models when we wish to decide the impact of lagged values of a variable on its current value.  

Including too few lags in the in-sample model means loss of valuable information, while including 

too many leads to complex models with poor out-of-sample performance. AIC and SIC are often 

employed to determine a balanced trade-off for the number of lags and select the optimal model.  

 Model selection can also be based on diagrammatic correlogram plots (Figure 6.2) 

showing the correlation between observations one or more periods apart indicating if they are 

significant at 5 % or 1%.; some econometrics texts do not bother with correlogram plots and rely 

almost entirely on MSE and its related criteria for model selection. An example is from US annual 

working hours per employee, showing plots of correlogram and AIC (here AC), and SIC (here 

PAC). The broken lines are the confidence intervals; values falling within the interval suggest the 

series is stable since it changes close to the mean. Note that there is a conflict here as AC picks the 

model with 7 lags but PAC, the one with two lags which is the preferred one due to its smaller 

number of parameters? 

 

Figure 6.2 correlogram 

 A cycle usually involves up and down movements. The distinction between cyclical 

movements that have a constant mean over time and those that do not is a central question in time 
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series analysis. Let us see why. In cross sectional analysis we can estimate the population mean by 

the sample mean interpreted as the mean of the distribution of sample means obtained in repeated 

sampling from the same population. With time series data, we only have one observation per each 

time period and we cannot go back in time to the mean from repeated sampling. We can, however, 

interpret an observation for a particular time period as representing the mean of the distribution of 

all possible outcomes generated by a stochastic process. For example, we can think of a monthly 

DJ value per unit time as the mean of a stochastically generated distribution of all possible values 

at that time. But if the stochastic mean may be different for different time periods, which one of 

the population means as represented by sample values of the series is the sample mean of a time 

series over all time periods it represents? What is the population mean for the DJ index itself if it 

keeps changing over time; which particular population mean is the sample mean an estimator for? 

The answer is none if the population mean is not constant. That question would be meaningless if 

the population mean varies over time, as illustrated in Figure 6.3. We call such a time series 

nonstationary; what mean of the series in figure (a), the sample mean in figure (b) stands for? If, 

however, the population mean is constant over time, then we can employ the sample mean as an 

estimate of the stochastically generated population mean and test to find out if it is a good 

estimator. Such a time series we call stationary. In this case, we can say the sample mean in figure 

(d) represents an estimate of the (unique) stochastically generated population mean in figure (c). 

Note that a stationary state as shown here only requires the series to have constant mean, not 

necessarily that the mean is obtained from a normal distribution.    

 

Figure 6.3 Time-series: Non-stationary and Stationary 
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The problem is the stochastic process that generated the series is unknown. We must make 

assumptions about the underlying stochastic process from which a time series sample is drawn in 

order to make inferences about the population using the sample moments. If the sample displays 

non-stationary properties, then we must first convert it into a stationary series before we can obtain 

sensible estimates and test results; and we shall discuss some methods to do so later.  

6.2 forecasting requirements 

The constancy of a series has two essential requirements: that the forecasting models of cycles of 

time series be covariance stationary and have a white noise error term.   

i. Covariance Stationary 

we define the autocovariance function  based on the distance between yt and yt-1 called the 

displacement . So,  

 (t,)=Con(yt, yt-)=E(yt - ).(yt- - ). 

Covariance stationarity requires that  (.) be independent of time and depend only on displacement 

, that is  (t,)= () for all t; that also implies the autocovariance function is symmetric:  ()= 

(-). Note that at =0,  (0)=Con(yt, yt)=Var(yt). Using  (0) as a bottom line, we finally require 

that no autocovariance be larger in absolute value than  (0); and this condition is met if  (0) is 

finite, that is if  (0) < as a sort of upper bound for the autocovariance function. 

In practice, we often work with autocorrelation function instead of the autocovariance function; 

the autocorrelation function has a much easier meaning as Corr(yt, yt-)(-1, 1) whereas Cov(yt, yt-

) can take any value and is not independent of the unit of measurement used.  
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Note that since (0)= ()/ (0)=1, a series’ dynamic structure can only be examined by correlations 

beyond displacement at 0.  

 The autocorrelation function does not control for the influence of the periods in-between yt 

& yt- when  >1. A Partial autocorrelation function measures linear correlation after controlling 
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for the effects of yt & yt+1- . Both types of autocorrelations approach zero as  becomes larger; the 

decline may be a gradual, one-sided decay, or a decay pattern that oscillates in sign.  

Autocorrelation Function with one-sided Gradual Damping 

 

Partial Autocorrelation Function with Gradual Damped Oscillation 

 

ii. White Noise errors  

Suppose yt=t where t, the shocks, are serially uncorrelated over time, and t (0, 2). A process 

with zero-mean and constant variance and no serial correlation is a zero-mean white noise process 

and written as t WN(0, 2). A (weakly) white noise t is not necessarily normally distributed; if 

it is, then t is a normal (also called Gaussian or strong) white noise written as t  iid(0, 2). There 

are no patterns in a white noise process. The first two unconditional moments of a series yt are E(yt 

)=0 and Var(yt )=2. Because a white noise series is uncorrelated over time, all autocorrelation and 

partial autocorrelations beyond displacement, are zero. We usually contrast conditional mean and 

variance of a series with its unconditional mean and variance in order to discover the series 

dynamic patterns. The conditioning information set consists of either the past history of the series 

or the past history of the shocks to that series t-1={ yt, yt-2, ...} or {t, t-2, ...}. Unlike unconditional 

mean and variance, the conditional mean and variance are not necessarily constant. However, 

given an independent white noise process, the conditional moments are E(yt |t-1|=0, and Var(yt|t-
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1)=E[(yt – E(yt)|t-1)]
2=2. Therefore, the conditional and unconditional moments are identical for 

an independent white noise series.  

iii. The Lag Operator 

We use lag operator notation to express forecasting models with many lags and parameters in 

shorter, compact notations. The lag operator with one lag is written as L1
yt= yt-1; with two lags is 

then L2
yt= L(yt-1)= yt-2. Other examples: first-differenced operator  is in fact a first-order lag 

operator since yt =(yt - yt-1)= (yt - Lyt)=(1 – L)yt; or a second-order lag operator, e.g.  (yt + 0.9yt-1+ 

0.6yt-2)=(1+0.9L+0.6L2)yt, is an example of a distributed lag model, a weighted sum of past and 

present lag values. More generally, the lag operator written with a polynomial in the lag operator 

of degree m is  

B(L)=b0+b1L+b2L
2+…+bmLm= =

m

i

i

i Lb
0

for i=0, 1, 2, …, m. 

6.3 Wold Theorem and its approximation  

Many different dynamic structures are consistent with covariance stationary state, leaving open 

the question of model selection. The Wold theorem points to the appropriate model selection. The 

Wold Theorem claims that no matter how a process generated a time series, it can always be 

represented as a function that is linear in its unpredictable past 𝜀t. as long as  the series is covariance 

stationary and 𝜀t is a zero mean process. Such a unique linear presentation consists of an infinite 

polynomial of 𝜀t:  

B(L)𝜀t  =b0𝜀t +b1𝜀t-1 +b2𝜀t-2+ … = ∑ 𝑏𝑖∞
0 𝜀t-I ; ∑bi

2<∞ , b0=1 & t WN(0, 2). 

Such an infinite distributed lag of white noise shocks is called a Wold representation. 𝜀t is a 

sequence of one-step ahead random shocks called innovations. At time t, 𝜀t is a “surprise” to yt., 

but all other shocks 𝜀t-1, 𝜀t-2, … are already known and processed in yt. Because there must be an i 

period after which the shock effects may become negligible, the theorem assumes∑bi
2<∞. The 

Wold Theorem does not assume (Gaussian) normality of 𝜀t, but 𝜀t is a white noise process. The 

conditional mean and variance of Wold representation show the dynamics of series modeled in 

terms of its conditional first two moments. The conditional mean: 

E(yt |t-1)= E(εt |t-1)+b1E(εt-1 |t-1)+ b2E(εt-2 |t-1)+…=0 +b1𝜀t-1 +b2𝜀t-2+ … = ∑ 𝑏𝑖∞
0 𝜀t-i 
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i.e. mean changes over time t with availability of information. Conditional variance:  

Var(yt |t-1)= E(yt - E(yt |t-1))
2= E(ε2

t |t-1)= E(ε2
t)=σ2 

The Wold theorem is a major step forward in providing the basis for forecasting and 

clarifying the conditions required to do so. However, it also has a major practical problem, namely 

it is based on an infinite series, and involves estimation of an infinite number of parameters! 

Therefore, solutions must be found to obtain sensible approximations to Wold representation.  We 

shall demonstrate that such an approximation can be obtained by the ratio of two finite polynomials 

of order p and q, L(𝐵)𝜀t ≈ 
θ𝑞(𝐿)

∅𝑝(𝐿)
 . We shall examine finite distributed lag models that provide the 

necessary approximations to Wold; typically, they are of very low order, namely, lags of 0, 1, or 

2 will often prove quite effective to render a hopeless task of estimating a model with infinite 

parameters into a parsimonious forecasting model with just a few parameters!  

6.4 MA, AR & ARMA Processes 

Three common approximations to the Wold infinite series representation are moving average 

(MA), auto regression (AR) and their combination (ARMA). We examine each in turn.  

 

i. Moving Average Process 

Since Wolds representation is based on shocks, the conditional mean of its infinite series provides 

a theoretical minimized loss forecast value. Let us start with an approximation for such an infinite 

series forecast in terms of its shocks or past lag values. Such a series is called a Moving Average 

or MA. We wish to obtain an approximation to the conditional mean of Wold series by the simplest, 

first order MA:  

MA(1): yt  = εt + θ εt-1   =(1+ θL) εt   & ετ~ WN(0, σ2 )     (6.4.1) 

(6.4.1) adds the moving average of the past error term observations to the mean of y to obtain a 

moving average of the past values of y. MA(1) series is a function of one-period unobservable 

shocks. θ measures the impact of a past shock on the current value of the series. One would expect 

small and large shocks to have very different Long Run impacts, but that is not so with the MA(1) 

model as evident from the graph below showing no LR effect..  
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Population Autocorrelation Function, MA(1) Process, θ=.4 

 

Population Autocorrelation Function, MA(1) Process, θ=.95

 

We say MA(1) has weak dynamics and short memory regardless of the value of θ; this is 

expressed explicitly in an abrupt cut off in the MA(1) autocorrelation function in that all 

autocorrelations   

𝜌(𝜏) =
𝛾(𝜏)

𝛾(0)
 beyond   > 1 are zero. 

Moments of MA(1) 

Unconditional mean: E(yt)=E(εt)+θE(εt-1)=0, using (6.4.1) 

Unconditional variance: Var(yt)=Var(εt)+θ2Var(εt-1)=2+θ22=2(1+θ2), that is, for given2, 

Var(yt) changes only with the size of the shock θ, e.g. 0.4 vs. 0.95.  

Contrast these with the mean and variance conditional on past information set t-1={εt-1, εt-2, …}. 

Conditional mean: E(yt|t-1)=E(εt|t-1)+θ E(εt-1|t-1)= θεt-1 

where we have made use of the fact that t-1 excludes εt, E(εt|t-1)= E(εt)=0. Moreover, E(εt-1) 

depends ont-1 but because εt and εt-1 are independent (serially uncorrelated), θE(εt-1|t-1)= 
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θE(εt-1)= θεt-1 where the last equality comes from that the fact that at time t,  εt-1 is no longer 

random but a known constant; hence, a constant conditional mean. 

Conditional variance: Var(yt|t-1)=[( yt – E(yt|t-1))
2|t-1]=E(ε2

t|t-1)=E(ε2
t)=2 

since ε is serially uncorrelated. Two points become clear from the contrast. The conditional mean 

adapts to the past information while the unconditional mean remains constant at zero; lags>1 do 

not affect the conditional mean, only the first lag does. The other point is that the conditional 

variance remains constant, unlike the unconditional one (affected by θ). 

The MA(1) autocovaraince function at displacement  is  

()=E[(εt + θεt-1)( εt- + θεt--1)]


 =

=
otherwise

if

0

12 
    (6.4.2) 

(do the exercise question to see why).   

The autocorrelation function is then the autocovrainace function scaled by the (unconditional) 

variance 








=

+==

otherwise

if

0

1
)1(

)0(

)(
)( 22

2









        (6.4.3) 

The main point is that all autocorrelations of MA(1) beyond =1 are zero, resulting in a sharp cut 

off in the function. This implies the MA process has limited ability to capture the impact of the 

past shocks on the current series, a feature that inhibits its potential as a forecasting model.    

Invertiblility  

MA(1) meets the covariance stationary conditions since it has constant unconditional mean and 

constant, finite unconditional variance, and its autocorrelation function depends on  only. If in 

addition, |θ|<1, then MA(1) is also invertible. This means the series can be re-stated in terms of its 

current shock and lagged values of the series, and not of the lagged values of the shocks. It turns 

out that invertibility of MA enables us to obtain a more accurate and highly parsimonious model 

for dynamic effects. This leads to the AR presentation:  
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Given εt  =  yt  - θ εt-1  , we use successive lag periods of εt.expressed in terms of yt by backward 

substitution:   

Start with by inverting (6.4.1), so   εt  =  yt   - θεt -1   and then substitute for εt-1= yt -1  - θ εt-2 : 

εt  =yt  - θ[(yt -1  - θ εt-2 )], so we now rewrite the series 

yt = εt + θyt -1 -θ
2 εt-2 , or εt  =  yt   - θ{(yt -1 - [θ  (yt -2  - θ εt-3)]}→ 

yt  = εt   + θyt -1 – θ2
 yt -2  + θ3 εt-3… 

yt = εt + θyt -1  - θ 2yt -2 + θ 3yt -3  - θ 4yt -4 + θ 5yt -5…→ 

εt =yt - θyt -1  + θ 2yt -2 - θ 3yt -3  + θ 4yt -4 - θ 5yt -5…) → 

εt =(1- θL  + θ 2 L
2
  -θ 3 L

3
 + θ 4 L

4
 - θ 5 L5

 …)yt.= (θ)L. yt     (6.4.4) 

Inside the (longer) bracket is an infinite geometric series; the sum of such a series is equal to  
1

1+𝜃
  

if θ<1. Therefore, in lag operator notation 

εt  = 
1

1+𝜃𝐿
 yt             (6.4.5) 

This is a ratio of two polynomial series in yt, the numerator is a degenerate polynomial (because 

it is of degree 0- no lag) and the denominator is a polynomial of an infinite degree. Because θ 

raises to higher powers, this series converges only if |θ|<1, or equivalently only if the MA(1) lag 

polynomial root L= - 
1

θ
 (obtained as the solution to (1+θL)=0) if θ<1 in absolute value).  

MA of order q 

The first-order MA is a special case of MA(q) of order q >1 with longer memory.  

yt=t+1t-1+2t-2+…+qt-q=(L)t where (L)=1+Q1L+…+QqL
q. The MA(q) conditional mean 

depends on q lags rather than only the first lag as in MA(1), but still all autocorrelations beyond 

displacement  > q are zero. Note that MA models are non-linear in parameters, see (6.4.4) & 

(6.4.5); the coefficient of the second lag of yt is the squared of the coefficient of the first lag of yt, 

etc. They must be estimated by iteration using some numerical estimation method. 
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ii. Autoregressive Model process 

It is instructive to contrast the dynamics of the MA process with those of the AR process. AR(1) 

model explains the current series as a linear function of its past one-period lag and an additive 

shock  

yt=yt-1+t and tWN (0, 2), or in lag operator form  

yt -yt-1=(1-L)yt=t         (6.4.6) 

AR(1) meets invertibility conditions, but must satisfy covariance stationary state conditions in 

order to converge; The condition for autoregressive covariance stationary state is obtained by 

backward substitution similar to the above for MA:  

εt    = yt  -  yt-1  and by backward substitution as above we have: 

yt   = εt  +  εt-1   + 2 εt-2 + …          (6.4.7)  or 

yt=
1

1− 𝐿
 t         (6.4.8) 

This is a ratio of two polynomials, the numerator a degenerate of degree 0 int, the denominator of 

degree p int. This MA representation of AR(1) is a convergent series if ||<1 or equivalently if L= 

- 
1


 . As with (6.4.5) for MA, (6.4.8) for AR requires ||<1 to converge; the parameters φ of its AR 

(∞) in (6.4.7) is said to be absolutely summable, that is ∑ |𝜑𝑗| < ∞∞
𝑗=0  for an AR polynominal of 

order j. 

Moments of AR(1) 

We employ MA representation of AR to work out unconditional moments.  

Unconditional mean: E(yt)=E(εt)+E(εt-1)+2E(εt-2)+...=0. 

Unconditional variance:  

Var(yt)=Var(εt)+Var(εt-1)+2Var(εt-2)+…=2+22+42+…=2(1+2+4+…) 

If ||<1 (using the rule for the sum of a geometric series) and  
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(1+2+4+…)
21

1

−
 →Var(yt)= 

2

2

1 



−
. 

Conditional mean: E(yt|t-1)= E(yt-1|yt-1)+E(t|yt-1)=yt-1+0 

Conditional Variance: : Var(yt|t-1)=
2Var(yt-1| yt-1)+Var(t|yt-1)=0+2. 

That is, a conditional mean adapts to the changing information but the unconditional mean is 

constant (zero); conditional variance is constant while unconditional variance changes with the 

parameter  depending on the number of lags, given 2value.    

To obtain the AR(1) autocorrelation function, we rely on the Yule-Walker equation 

according to which we can quickly work out ()if we know the initial period (-1): 

(-1). φ =()         (6.4.9) 

By this recursive method, all we have to do to obtain () is to scale 

(-1) by AR parameter φ. Start with  (0)= 
2

2

1 



−
, then at =1→   

 (1)= φ
2

2

1 



−
; at =2→   (2)= φ 2

2

2

1 



−
, etc., so in general  ()=φ τ

2

2

1 



−
for =0, 1, 2, …. 

The AR(1) autocorrelation function is then obtained by dividing through by  (0)= 
2

2

1 



−
 to have 

𝜌(𝜏) =
𝛾(𝜏)

𝛾(0)
= 𝜙𝜏, =0, 1, 2, …       (6.4.10) 

 is called the persistence parameter since unlike MA(1), AR(1) autocorrelation approaches zero 

gradually (persists beyond displacement period) without an abrupt cut off and only at the limit). 

With  > 0, the autocorrelation is one-sided and with <0, the decay oscillates. The AR of order 

one process displays a much bigger difference between 0.4 and 0.95 from MA(1) – Compare 

graphs, why? This is an indication of a longer memory of the AR(1) process, capturing more 

persistence dynamics. An AR(p) process owes its long-term memory to its relatively slow declining 

autocovariance function that decays geometrically.  
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Key point: forecasting requires linking the present series to its observable past. AR(1), where 

each lag of y incorporates the information on the previous lag, offers the necessary links using all 

information from the past, MA(1) does so only using the information from the last period because 

it excludes lagged periods of unobservable shocks>1. However, given invertibility, we can always 

generate a AR(1) process for MA(1). Compare (6.4.1) with (6.4.5) to see why; for more on the MA 

short and AR long memory and forecasting abilities, see section (6.5) forecasting with MA & AR 

processes.    

Below shows lag effects with AR(1) for 0.4 vs. 0.95.    

Population Autocorrelation Function AR(1) Process, =.4 

 

Population Autocorrelation Function AR(1) Process,=.95

 

AR(p)  

yt=1yt-1+2yt-2+…+pyt-p and  εt~ WN(0, σ2 ),  

or in lag operator form 

(L)yt=1-1L+2L
2-…-pL

p)yt=εt.      (6.4.11) 

A necessary (but not sufficient) condition for AR(p) to be covariance stationary is 1
1

 =

p

i i . The 

higher-order autocorrelation can oscillate with a greater variety of patterns.  AR(p) is a 

generalization of AR(1) as  

θ(L) yt = (1 - φ1L – φ2L
2 - … - φ1L

P) yt = εt  or 

yt = 
1

1−φL
 εt         (6.4.12) 



 91 

We approximate the Wold process with AR(1) using 
1

1−φL
  . AR(1) is an infinite order series (see 

(5.4.7) & (5.4.8)) and yet has only one parameter, namely  φ, and not an infinite number of 

parameters; it is obtained (approximated) from the ratio of two polynomials, a (degenerate) degree 

one polynomial in εt in the nominator, and a polynomial in the denominator of degree one in yt.  

 iii.   ARMA Process 

Combining MA and AR processes can result in more accurate and highly parsimonious 

approximations to the Wold representation. The Autoregessive Moving Average ARMA(p,q) 

model combines AR(p) and MA(q) processes, often in low orders, e.g. p=2 & q=1, to produce 

highly accurate and parsimonious forecasting models. For example, AR(5) may result in the same 

approximation accuracy as ARMA(2,1) with only three parameters to estimate rather than five if 

we combine AR with MA.  

The simplest ARMA(1, 1) is  

yt=yt-1+t+t-1 ; εt~ WN(0, σ2 ), or 

(1 - L)yt=(1 + L)t        (6.4.13) 

The ||<1 condition for the MA representation for covariance stationary state leads to 
tt

L

L
y 





−

+
=

1

1

and the invertibility condition for AR representation, | |<1, again leads to 
tt

L

L
y 




=

+

−

1

1 . With the 

ARMA process, these conditions must be checked or satisfied. More generally the ARMA(p, q) 

process  

yt=1yt-1+2yt-2+…+pyt-p+t +1t-1 +2t-2+…+qt-q or 

in lag operator form (taking all y terms to the left), and using capital (theta) for s and capital 

(phi)  for  s, we have    

L=1-1L-2L
2
 -…-pL

p and L=1+1L+2L
2+…+qL

q, 

we can rewrite the equation as  

Lyt =Lt →
tt

L

L
y 




= . 
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 The Wold representation with infinite parameters can now be approximated by a ratio of 

two finite-order lag operator polynomials, neither being degenerate, and results in very accurate 

models that often require estimating only a few parameters. The ARMA processes have constant 

unconditional mean but a time-varying conditional mean; the autocorrelation functions do not cut 

off at any particular displacement, but only damps down gradually.  

 For application, note the difference in the estimation methods required for MA and AR 

models by comparing (6.4.3) with (6.4.5). The MA (1) process (4) obtains forecast approximation 

to the Wold theorem by estimating an equation in which the coefficient of the second lag of y is 

the squared of the coefficient on the first lag of y, etc. after we invert the unobservable shocks to 

observable variables of the series.   Such a non-linear model in parameters cannot be estimated by 

OLS and must employ a non-linear numerical minimization method. By contrast, the lag 

coefficients of AR(1) process in (6.4.5), or its general version in (6.4.9), are simply the linear in 

parameter for each lagged variable; therefore AR models can easily be estimated by OLS.  

Example for Canadian Employment series reports several sets of estimates for MA, AR and 

ARMA. The model starts as an ARMA(3, 1), but roots of MA(1) and AR(3) are roughly of the same 

size (- .95) , so cancel each other, simplifying the model selected by the Schwarz criteria as  the 

most parsimonious AR(2); results shown in table 67.1 here turn out to perform best. 

Table 6.1 Dependent Variable is CANEMP; Sample: 1962:1-1993:4; included observations:  

128 Convergence achieved after 3 iterations       

Variable Coefficient Std. Error t Statistic Prob.   

C   101.2413  3.399620  29.78017  0.0000 

AR(1)   1.438810  0.078487  18.33188  0.0000 

AR(2)   0.476451  0.077902  6.116042  0.0000 

R squared   0.963372     Mean dependent var   101.0176 

Adjusted R squared  0.962786     S.D. dependent var   7.499163 

S.E. of regression  1.446663     Akaike info criterion  0.761677 

Sum squared resid  261.6041     Schwarz criterion   0.828522 

Log likelihood   227.3715     F statistic    1643.837 

Durbin Watson stat  2.067024     Prob(F statistic)   0.000000 
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Inverted AR Roots        .92        .52  

 

 

Estimates suggest good impact for lags, and the residuals appear to be white noise (zero mean), 

and the correlogram plots back that conclusion as all lags are within 2 s.d from the mean (5% 

confidence) bands.  

 

6.5 Forecasting with AR, MA& ARMA processes 

The history of a series yT is contained in its information set; and there are two ways of expressing 

it, either in terms its own available past history, yT-j, or, in terms of its present and past shocks, εt 

an d εt-j. As long as the series is covariance stationary and invertible, we can infer history of εt from 

the history of yT, and history of yT from that of εt . Therefore the information set at time T contains 

the present and lagged values of both yT and εt in ΩT  = {yt , yt-1, yt-2,…, 𝜀t, 𝜀t-1, 𝜀t-2,…}. Based on 

ΩT, the optimal forecast at time (T+h) is one that minimizes the forecast expected loss. This turns 

out to be equal to the mean of the series conditional on ΩT, that is E(yT+h|ΩT ). We find the best 
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linear approximation to the conditional mean of a series to order to obtain linear forecasts, or 

linear projections P(yT+h|ΩT ). 

i. Optimal forecasts with MA process 

Since the Wold representation is based on past innovations, let us start with the MA(2) 

approximation for such an infinite series as an example 

yt  = εt + ϴ1εt-1 + ϴ2εt-2 +ut         (6.51) 

where ut  is a random error term. Using (6.5.1), we operationalize forecasting by replacing 

unknown parameters with estimates and unobservable innovations with residuals.  

To obtain 1-step-ahead projection forecast (T+1) at time T, first re-write the (6.5.1) process for 

(T+1) period, then set its future innovations ut  equal to 0. YT+1 = εT+1 + ϴ1εT + ϴ2εT-1 when the 

information available at T is YT+1,T=P(yT+h|ΩT )= ϴ1εT + ϴ2εT-1 since all future innovations 

E(T+1)=0. The forecast error is therefore (eT+1, T)=(YT+1-YT+1, T)= εT+1 (white noise error). Hence 

forecast variance is 1
2=2.  

For 2-step-ahead forecast: YT+2= εT+2 + ϴ1εT+1 + ϴ2εT. Since both E(T+1)=0 and E(ϴT+1)=0, the 

forecast projection at time T is therefore YT+2,T=P(yT+h|ΩT )=ϴ2εT. Therefore, the forecast error is 

eT+2, T=(YT+1-YT+1, T)= εT+2 + ϴ1εT+1 .  

The MA(1) variance is 2
2=2(1+ϴ 1

2), using property 2 of the variance, see appendix, and  

Var(εT+1 )= Var(εT+2 )=2. 

The 3-step-ahead is unforecastable with the MA(2) process since the right-hand side  

YT+3, T= εT+3 + ϴ1εT+2 + ϴ2εT+1 are all 0 at (T+3) and therefore  

(eT+3, T)=(yT+3,T)=0 for all τ>2. In general, the error with MA(2) for a h-step-ahead forecast 

remains unchanged for all subsequent steps. eT+h, T=(YT+h, T= εT+h + ϴ1εT+h-1 + ϴ2εT+h-2 ) for all 0 

h>2; the forecast error is h
2=2(1+ϴ 1

2+ ϴ 2
2) as with the 3; that is the error remains the same 

even for h-step-ahead error. This is a dramatic display of the implication that MA process has a 

short memory.  
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Example: Canadian Employment forecast with a MA(4) process. Note that changes in employment 

time series is expected to revert to its long-run mean slowly and with a time-lag.  Figure below 

shows the last historical data for 1993.4 to be well below its mean, and yet the forecast displays a 

sharp rise that is unnatural for a variable like employment. This is a manifestation of a MA 

process’s short memory. That is because MA(4) has left out the portion of the lag effects > 4, thus 

estimating a bigger impact for the first 4 lags. Figure  confirms that 4-step-ahead forecast with 

MA(4) is unable to capture persistence as all forecasts beyond lag 4 are 0. 

 

 

ii. Optimal forecast with AR process and the Chain Rule of Forecasting 

A simple recursive method called the chain rule of forecasting is available to obtain forecasts 

from an autoregressive process. The rule is as follows: first construct the optimal 1-step-ahead 

forecast (T+1) from the estimates obtained with observations up to time T, then construct the 

optimal 2-step-ahead forecast based on the optimal 1-setp-ahead forecast already available, and 

repeat the process to obtain a m-step-ahead optimal forecast for T+m time from the forecast 

available from T+(m-1) period, etc. Suppose AR(1)   

yt  = ϕ yt-1  + εt   &  ετ ~ WN(0, σ2 )      (6.5.2) 

Using the estimates from this equation we construct the optimal 1-step-ahead forecast, by noting 

that all future innovations are zero.  

For example, write out (T+1), (T+2) and (T+3)-step-ahead forecasts:  

1-step ahead forecast: first re-write (6.5.2) process for (T+1), then obtain its projection forecast by 

setting its future innovation equal to 0: 
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YT+1  = φ yT   + εT+1 and its projection forecast yt+1, T  = φ yT  

2-step-ahead-forecast:YT+2  = φ yT+1   + εt+2 and its projection forecast  

(yt+2, T ) = φ yT+1, T= φ(φ yt)= φ2yt (substituting YT+1  with φyT  from the 1-step-ahead forecast.)    

3-step-ahead-forecast: YT+3  = φ yT+2  + εT+3 and its projection forecast  

(yT+3, T ) = φ yT+3, T=φ(φ2 yt)= φ3yt….. 

YT+h  = φ yT+h-1  + εT+h and its projection forecast  

(yt+3, T  = φ yt+h-1, T)=φ(φh-1 yt)= φhyt 

Note for the AR(1) only the most recent y is used to construct optimal forecasts, that is the entire 

set of  h-period-ahead forecasts can be expressed in terms of only φ and yT , both of which are 

known from period T . 

This AR method of forecasting allows recursive build-up of forecasts for any further period, 

displaying the longer memory capacity and superior ability to capture and make use of lag history 

of a series in forecasting its future values. AR forecasts therefore do not display abrupt cut-off 

forecast beyond displacement τ characteristic of the MA process, though they shrink and decline 

gradually.   

iii. Forecast with the ARMA process  

The ARMA process combines the lag structures of MA and AR models to further improve forecast 

values.  

Take the simple ARMA(1, 1) for example: 

yt  = ϕ yt-1 + εt  + ϴεt-1 

At time T+1, yT+1  = ϕ yT + εT+1  + ϴεT; its forecast projection is  

yT+1 , T = ϕ yT + ϴεT since εT+1=0.  

At time T+2, yT+2  = ϕ yT+1 + εT+2  + ϴεT+1 ; its forecast projection is  

yT+2 , T = ϕ yT+1, T, since E(εT+2)= ϴE(εT+1)=0. 

Upon substitution for the 1-step-ahead forecast, this leads to the forecast for (T+2) as  
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yT+2 , T =  ϕ (ϕ yT + ϴεT)= ϕ 2yT + ϕ ϴεT, substituting for yT+1  at T+1 from above.  

Continuing in this manner, in general, yT+h , T = ϕ yT+h-1 , T for all h>1.   

Example: Canadian Employment forecasts were obtained with AR and ARMA processes, and the 

model selected as best was the AR(2) process. The different nature of the autoregressive process is 

clear from the figure below that shows 12-step-ahead projection forecasts with a much longer 

forecast-horizon. Note that there is no sharp rise in the forecasts; consistent with slow adjustment 

of employment to its long-run mean value with time lags.   Figure below illustrates comparison of 

a 4-quarter-ahead projection forecast and the realization; note the mean appears drastically smaller, 

suggesting a more accurate forecast.  

 

 

Readings 

For textbook discussion, see Diebold (2006, chapters 3, 7, 8 and 9) and Pesaran (2015, chapter 17); 

Gonzalez-Rivera (2013, chapters 6 and 7). Jorgenson (1966) introduced the rational distributed lags 

model from engineering into economics.  
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Chapter 6 Forecasting with MA, AR Exercises 

Q6.1 Part 1:  

For each of the following, determine whether {𝑦𝑡} represents a stable process. Determine whether 

the characteristic roots are real or imaginary and whether the real parts are positive or negative.  

a. 𝑦𝑡 − 1.2𝑦𝑡−1 + 0.2𝑦𝑡−2  

b. 𝑦𝑡 − 1.2𝑦𝑡−1 + 0.4𝑦𝑡−2  

c. 𝑦𝑡 − 1.2𝑦𝑡−1 − 1.2𝑦𝑡−2  

d. 𝑦𝑡 + 1.2𝑦𝑡−1 

e. 𝑦𝑡 − 0.7𝑦𝑡−1 − 0.25𝑦𝑡−2 + 0.175𝑦𝑡−3 = 0  

[Hint: (𝑥 −  0.5)(𝑥 + 0.5)(𝑥 − 0.7) = 𝑥3 − 0.7𝑥2 − 0.25𝑥 + 0.175] 

Part 2: Write each of the above equations using lag operators. Determine the characteristic roots 

of the inverse characteristic equation.  

Q6.2 Fill in the missing steps in (6.4.2) for taking expectation required to obtain the final results.   

Q6.3    Given an initial condition for 𝑦𝑜, find the solution for 𝑦𝑡. Also find the s-step-ahead forecast 

𝐸𝑡𝑦𝑡+𝑠 

a. 𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡 + 0.5𝜀𝑡−1. 

b. 𝑦𝑡 = 1.1𝑦𝑡−1 + 𝜀𝑡 

 

Q6.4 Download aic sic and forecasting.dta set containing the US time-series of GDP.   

a. Fit AR(1) for GDP and obtain Schwarz(sic) and Akaike (aic) critera for model selection.  

b. Now fit AR(2)-AR(4) for GDP and select the best model based on the smallest  Schwarz(sic) 

and Akaike (aic) values. 

c. Use the selected model to obtain manually the forecasts for the next four periods using the two 

final observations in the data set for first forecast and then update. 

Q6.5 Download WPI_US.dta set of the US wholesale price index.  

a. Fit an AR(1) to lwpi series. Explain the model implemented. 

 b. Now fit a MA(1) process to ln_wpi and compare the outcome with a. above 

c. Fit an ARMA (2,1) model to ln_wpi series and comment on the outcome.  

d. Obtain a one-step-ahead forecast for ARIMA (2,0,1) and plot the forecast values against the 

actual values of ln_wpi 
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Chapter 7 Stationary Series, ARDL, VAR & Impulse-Response Function 

Introduction  

In a time-series regression model we have a time-series of one (dependent or endogenous) 

variable explained by the time-series of one or more (independent or exogenous) variable(s) that 

may also include in addition its own lagged values. The distributed-lag model excludes lags of the 

dependent variable as explanatory variables  

ttttt xxxy  +++++= −−− ...3322110
      (7.1) 

There are a number of problems with this essentially ad hoc model. If the number of lags Nx is 

large, loss of degrees of freedom will violate the forecasting principle of parsimony. Moreover, 

the various lagged values of x are likely to be severely multicollinear, making coefficient estimates 

imprecise. The alternatives approach extensively explored in literature are autoregressive models, 

or the relationships among a system of such models. We examine these alternative models in this 

chapter. 

7.1 Dynamic Model with Lagged Dependent Variables 

(7.1) leaves out the impact of yt-i on yt as arbitrary without testing for the presence of yt-i impact. 

The rational distributed lag (ARDL) models take that impact into account by yt = 𝛼 +
𝛽(𝐿)

𝜆(𝐿)
𝑥𝑡 + 𝜇𝑡 

where 
𝛽(𝐿)

𝜆(𝐿)
 is the ratio of two polynomials in yt and 𝑥𝑡. It turns out that inclusion of lagged 

dependent values in (7.1) absorbs residual serial correlation, often resulting in substantially 

improved forecasts for yt. 
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0 , or λ(L)yt= 0 + (L)xt+ 
t     (7.1.1) 

This is the Autoregressive Distributed Lag Model or the ARDL(p, q). In contrast with equation 

(7.1), the presence of y
t–1

 on the RHS makes equation (7.1.1) a dynamic model.  (L) is called the 

transfer function because it shows how the movement in exogenous zt affects, or transfers, the 

endogenous variable yt; the coefficients of (L) are called transfer function weights. 
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Note that the model can be expressed, by backward substitution, in terms of moving average errors 

to represent the rational distributed lag model: 

λ(L)yt= 0 λ(1)+ (L)xt+ λ(L)vt ; εt= λ(L)vt 

The ARDL model has been revived lately because of recent developments in time-series analysis 

that are more easily modeled as an ARDL compared with the rational distributed lag model; by 

selecting p and q to be sufficiently large, we can obtain a good approximation to the rational 

distributed lag model.  

The simplest is the ARDL (1, 1) dynamic model 

yt=0+0xt+yt-1+t.        (7.1.2) 

To find out the impact of the lags on the dependent variable, substitute for lagged y in (7.1.2): 

yt-1=0+0xt-1+yt-2+t-1; therefore, 

yt=0+0xt+(0+0xt-1+yt-2+t-1)+ t =(0+0) +0xt + (0xt-1+yt-2+t-1)+t. 

Substitute again for yt-2 in this last equation, then  

yt=0
*+0xt +0xt-1+20xt-2 +3yt-2+…)+t

*   (7.1.3) 

where * indicate compound intercept or residuals after collecting terms.  

As long as λ is between 0 and 1, the coefficients smoothly decline, more quickly the smaller (away 

from 1) the λ value is, as in Figure 7.1. That is, the impact of the lags in a dynamic model 

continuously declines. Formally, the ARDL model is stable if all the roots of the pth order 

polynomial equation  

λ(z)= 1 + λ1z + λ2z
2+ … + λpz

p =0 

lie outside the unit circle, namely if |z|>1; unstable if λ(1)= 0; see Appendix on the roots of a 

polynomial. 

 

Figure 7.1 Dynamic Models with Geometric Weighting Schemes  

The ARDL (p, q) can be estimated by the OLS method, however, consistency requires zt follows a 

covariance stationary process as T → ∞. This condition is guaranteed if all the roots of the 
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polynomial λ(z) lie outside the unit circle; it is not however sufficient for consistent estimation. In 

addition, ), t must be serially uncorrelated to ensure that ∑ztt / T converges to a zero vector as  

T → ∞. 

7.2 VAR Regression Model: Introduction 

In economics, typically all variables are endogenous and partially affected by most other variables; 

often we may not be secure if a variable is exogenous. This is specially the case with time-series 

for a given set of variables since the past values of the lagged dependent variables can influence 

their current values in addition to the influences of the current and lagged values of the explanatory 

variables, making all variables interdependent, all being explanatory and dependent variables to 

each other simultaneously. The general approach would be to extend the transfer function approach 

and treat all variables symmetrically as endogenous in a system of interdependent equations. 

Consider the bivariate case 

yt=b10 – b12zt + γ11yt-1 + γ12zt-1 + εyt   (7.2.1) 

zt=b20 – b21yt + γ21yt-1 + γ22zt-1 + εzt   (7.2.2) 

where εytand εzt are assumed white nose errors; uncorrelated with each other. This structure allows 

zt and yt to affect each other, e.g. b12zt is the contemporaneous effect of a unit change in zt on yt . 

Note that if for example, b12zt ≠ 0, then εzt has an indirect contemporaneous effect on yt. As it 

stands, this model cannot be estimated by the OLS because of simultaneous equation bias resulting 

from the correlation of the regressors and the error terms. We can transform the equations into a 

more easily estimable system written in compact form as 

Bxt= Ӷ0 + Ӷ1xt-1 + εt     (7.2.3) 

where  B=[
1 𝑏12

𝑏21 1
] , 𝑥𝑡 = [

𝑦𝑡

𝑧𝑡
], Ӷ0 = [

𝑏10

𝑏20
], Ӷ1=[

 𝛾11 𝛾12

𝛾21 𝛾22
], and εt= [

𝜀𝑦𝑡

𝜀𝑧𝑡
] 

Pre-multiplication of (7.2.3) by B-1 matrix results in a system of equations with the vector of 

endogenous variables in xt as a function of lagged variables only, excluding contemporaneous RH 

variables.  

xt=A0+A1xt-1 +et     (7.2.4) 
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where A0= B -1Ӷ0 , A1= B
 -1Ӷ1, and  et=B -1εt  

We can rewrite (7.2.4) as a of two-equations in an equivalent form to (7.2.1) and (7.2.2) as  

yt=a10 + a11yt-1 + a12zt-1 + eyt              (7.2.5) 

zt=a20 + a21yt-1 + a22zt-1 + ezt     (7.2.6) 

where the variance-covariance matrix of ey and ezt is defined as 

∑=[
𝑣𝑎𝑟(𝑒1𝑡) 𝑐𝑜𝑣(𝑒1𝑡,𝑒2𝑡)

𝑐𝑜𝑣(𝑒1𝑡,𝑒2𝑡) 𝑣𝑎𝑟(𝑒2𝑡)
] = [

𝜎1
2 𝜎12

𝜎21 𝜎2
2 ] 

since all elements of ∑ are independent of time.  

The critical point to note is that the error terms of (7.2.5) and (7.2.6) are now transformed 

into composites errors of the two innovation shocks, εyt and εzt , because the new vector is           

et = B-1εt . However, since εyt and εzt are white-noise processes, both ey and ezt are also white-

noise errors and computed as (using the rule of matrix inversion) 

e1t=(εyt – b12εzt) / (1 – b12b21)      (7.2.7) 

e2t=(εzt – b21εyt) / (1 – b12b21)      (7.2.8)10 

We call the system of equation (7.2.1) and (7.2.2) a structural VAR, vector autoregression, 

or the primitive system and the (7.2.3) and (7.2.4) system of equations a VAR in standard form. 

Once again, stability requires that |a1| > 1, or the roots of its characteristic equation lie outside the 

unit circle.  

There are two notable features to the above VAR model. First, it assumes that yt and zt are 

dynamically related but they are not contemporaneously related to each other. That is, only lagged 

values of yt and zt  affect the current values of yt and zt. Second, we assume that the current period 

error terms are uncorrelated, that is, they are contemporaneously uncorrelated. Both equations are 

assumed to have WN errors, and the lagged disturbances can be correlated to transmit shocks from 

one equation to other, but they may also be uncorrelated, in which case σ12=0. If the model based 

 
10 The inverse of the matrix B (of the structural model’s coeficients) is the product of the inverse of its determinant, 

1

1−𝑏12𝑏21
, and its adjoint [

1 −𝑏21

−𝑏12 1
]; therefore  [

𝑒𝑦𝑡

𝑒𝑧𝑡
]= {

1

1−𝑏12𝑏21
. ([

1 −𝑏21

−𝑏12 1
].[

𝜀𝑦𝑡

𝜀𝑧𝑡
])} renders (7.2.7) and 

(7.2.8).  
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on the two assumptions above represent the true dynamic system, and y1 and y2 are have 

coefficients less than 1 in absolute value, with zero-mean contemporaneously uncorrelated 

residuals, then equation-by-equation estimation of the VAR by OLS gives estimates that are 

consistent and asymptotically efficient; even though the lagged errors are correlated, the SURE 

regression cannot improve the efficiency of the estimates since all regressions have identical RH 

variables. We can also estimate the variance-covariance of the VAR in standard form, and select 

VAR forecast models based on minimization of predictive errors, or minimized AIC and SIC duly 

adjusted for the simultaneous equation context and available in software such as Stata.    

One important remaining question is whether we can use the VAR in standard form to 

recover the structural VAR parameters since the latter cannot be directly estimated due to the 

correlation between yt and eyt,, and zt and ezt. Since the structural VAR contains more parameters 

than the VAR standard, without imposing restrictions on the structural VAR system parameters that 

are not identified from the VAR estimates. For example, (7.2.5) and (7.2.6) have six coefficients, 

plus var (e1t), var(e2t), and cov(e1t, e2t), nine parameters in total. However, the structural VAR 

system (7.2.1) and (7.2.2) has 10 parameters (error terms are assumed uncorrelated with each 

other). Therefore, the structural VAR parameters are under-identified; identification requires 

imposing a restriction on the structural VAR equations. One strategy is to use a recursive system 

of the structural VAR by imposing restriction. For example, economic theory may support an 

asymmetric restriction that b12=0, i.e. that yt has not contemporaneous effect on zt, its only effects 

are through its lag values, while zt, has a contemporaneous effect on yt. Then the system is exactly 

identified, and the restriction manifests itself so that εyt and εzt affect the contemporaneous value 

of yt, but only εyt shocks affect contemporaneous values of zt, that is, the observed values of e2t are 

totally the result of pure shocks to the {zt}sequence. Imposing the restriction on the computed 

errors for the VAR in standard from (7.2.7) and (7.2.8) leads to 

E2t=εyt – b12εzt 

 E1t=εzt  

 The decomposition of the residuals by this asymmetric, triangular method is known as a 

Choleski decomposition.  

7.3 The Impulse-Response Function 
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We must address additional questions on the duration of lag effects if we are interested in how 

shocks to one variable are transmitted to other variables in the VAR system, as well as the length 

of their duration, and their persistence. In other words, we are interested to know how shocks affect 

the adjustment path of VAR variables. To that end, we rely on a moving average representation of 

the VAR system of equations, expressing the sequence of each time-series process {xt} purely in 

terms of the current and past values of its own shocks, and those of the other VAR processes.  

Univariate path: Start with the simple case of a univariate series, subject to a shock of size v at 

t=1. 

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑣𝑡            𝑣𝑡~𝑊𝑁(0, 𝜎2)      (7.3.1) 

Since we are interested in the dynamic path, the starting value of y before the shock is irrelevant; 

therefore,  y0 = 0. To simplify further, assume there are no additional shocks during periods t>1.  

Following the shock at t=1, that is v2=v3=…=0, the value of y1 is  

at t=1, 𝑦1 = 𝜌𝑦0 + 𝑣1 = 𝑣;  

at t=2, 𝑦2 = 𝜌𝑦1 = 𝜌𝑣 ;  

at t=3, 𝑦3 = 𝜌𝑦2 =  𝜌(𝜌𝑦1) =  𝜌2𝑣; …              (7.3.2) 

Thus, the time-path of following the shocks is {𝑣, 𝜌𝑣, 𝜌2𝑣,… } and is known as the impulse-

response function and the coefficient values {1, 𝜌, 𝜌2, … } as multipliers. Here the impulse is the 

shock and the response is the change. As it becomes clear later, it is more convenient to define (or 

normalize) impulse in terms of units of standard deviations, rather than unit shocks to avoid 

measurement problems.  Restated (7.3.1) in the standard Moving Average form as 

𝑦𝑡 = 𝑏0𝜀𝑡 + 𝑏1𝜀𝑡−1 + 𝑏2𝜀𝑡−2 + ⋯ = ∑ 𝑏𝑖𝜀𝑡−𝑖
∞
𝑖=0 ;    𝜀𝑡~𝑊𝑁(0, 𝜎2)              (7.3.3) 

The coefficient of  𝜀𝑡 is usually normalized to unity but in (7.3.3) it is stated more generally as b0, 

though this introduces an ambiguity in that we can always divide and multiply each 𝜀𝑡 term in 

(7.3.3) by an arbitrary constant m to obtain an equivalent model but different parameters and 

innovation shocks. Normalization by m=1 results in the standard I-R function (7.3.3), with 𝑏0 ∗ 1. 

However, setting m= 𝜎 turns out to be a particularly helpful normalization. Let us normalize the 

equation by dividing throughout by 
𝜎

𝜎
 : 
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𝑦𝑡 = 𝑏0𝜎 (
1

𝜎
𝜀𝑡) + 𝑏1𝜎 (

1

𝜎
𝜀𝑡−1) + 𝑏2𝜎 (

1

𝜎
𝜀𝑡−2) + ⋯                    (7.3.4) 

set 𝑏𝑖′ = 𝑏𝑖𝜎 and 𝜀𝑖
′ =

𝜀𝑡

𝜎
 , then one standard deviation 𝜎 shock to 𝜀𝑡  converts (7.3.3) into 

𝑦𝑡 = 𝑏0′𝜀𝑡′ +  𝑏1′𝜀𝑡−1′ +  𝑏2′𝜀𝑡−2′ + ⋯ ;       𝜀𝑡′~𝑊𝑁(0, 1)          (7.3.5) 

because Var( 
𝜀𝑡

𝜎
 ) = 

1

𝜎2 var(𝜀𝑡) = 
𝜎2

𝜎2 = 1. Now 𝑏𝑖′ parameter measures one-standard deviation shock 

to 𝜀𝑡′ , that is the contemporaneous effect of a unit shock to 𝜀𝑡′ at time t=1; 𝑏1′ multiplies 𝜀𝑡−1′ to 

give the effect of a unit standard deviation shock one period later, etc. Hence, the impulse-response 

multipliers {𝑏0′,  𝑏1′,  𝑏2′, …} track the complete dynamic response of y. 

Example: suppose 𝜌 = 0.9, & 𝑣 = 1, then y will be{1, 0.9, 0.81, … }, so y initially rises by the 

shock (to y=1) and then gradually returns to its original value.  

 

7.4 The VAR Multivariate Impulse-Response Function 

Generalization of (7.2.1) to the multivariate case follows the same method but more than one shock 

must be tracked. Now consider the impulse-response function with two time-series with a two-

equation VAR system of stationary variables expressed in the standard moving average 

representation; and, just like the univariate case, we also convert the shocks into units of the 

standard deviations.   

𝑦1𝑡 = 𝜀11 
+ 𝜑11𝜀𝑡−1 + 𝜑12𝜀𝑡−1 + ⋯ ;  𝜀1𝑡

~𝑊𝑁(0, 𝜎1
2) 

𝑧𝑡 = 𝜀21 + 𝜑21 𝜀𝑡−1 + 𝜑22 𝜀𝑡−1 + ⋯ ;   𝜀2𝑡
~𝑊𝑁(0, 𝜎2

2) 

cov (𝜀1𝑡
, 𝜀1𝑡

) = 𝜀12 

Just as in the univariate case, the transformed normalization by σ results in the current innovations 

having unit coefficients; this is called a Vector Moving Average or VMA transformation of VAR. 
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Now we have four Impulse-Response functions and therefore, track four sequences of shocks: the 

effect of a shock to y on the time-paths of y and x, and the effect of a shock to x on the time-paths 

of y and x. This is a more complicated mechanism since it has to allow for (a) interdependent 

dynamics, and (b) has to identify the correct shock that in fact is not observable from the data. The 

time paths of the innovation shocks to each process cannot, however, be determined from solely 

from the variance-covariance of the VAR standard errors, and as previously discussed, requires 

imposing parameter restrictions on the model above. This is known as the identification problem. 

We can rely on the restriction generated by the recursive ordering of the Choleski decomposition 

by, for instance, setting b21=0 so as to rule out any contemporaneous effect of yt on zt ; therefore, 

e’1t=εyt – b12εzt 

e’2t=εzt 

cov (e’1t , e’2t)=0 

Such restrictions generate an important asymmetry by a normalization ordering of the variables so 

a εzt shock affects both e’1t and e’2t , but εyt does not affect e’2t. Sometimes economic theory can 

suggest such a restriction, or there may be a priori information available, but the importance of 

the ordering depends crucially on the magnitude of the correlation coefficient between e’1t and e’2t 

, ρ12=σ12/σ1σ2. If ρ12=0, the ordering is of no consequence since there is then no correlation between 

the VAR equations and the residuals of the structural VAR, and the VAR standard residuals are 

equal e1t=εyt and  e2t=εzt , that is E(e1t e2t)=0 and both b12 and b21 can be set equal to zero. At the 

other extreme, if ρ12=1, a single shock contemporaneously affects both variables. We should 

therefore test the significance of ρ12, and then obtain a particular the impulse-response function and 

compare the results with that function obtained from reversing the ordering. If the outcomes are 

different, additional investigation is necessary.    

Example The four response functions with the numerical values of 𝜎𝑦 = 1, 𝜎𝑥 = 2,  

𝜕11 = 0.7, 𝜕12 = 0.2, 𝜕21 = 0.3, 𝜕22 = 0.6 are shown below. 
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Example: the impulse-response for LA, and Riverside (a suburb of LA) housing markets: 95% 

confidence of bonds (the bonds including zero indicate statistically insignificant response).Since 

a shock in Riverside does not have a contemporaneous effect on the LA market, the ordering of 

the shock is (GLS, GRiv)   

 

Note that a shock to LA lasts 10 quarters in both LA and Riverside markets (two left graphs), while 

a shock in Riverside disappears after two quarters in Riverside and has no effect over time in 

LA.The LA market dominates the dynamics in both markets. 

Variance Decomposition 

An alternative method to express the impulse-response function is by means of Variance 

Decomposition that estimates “how much of the variance for the h-step-ahead error of the variable 
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yt is explained by the innovations of the variable zt? ”  To see how the decomposition is obtained, 

obtain the n-step-ahead forecast starting from the same information given: 

xt+n=μ+ ∑ 𝑏𝑖𝜀𝑡+𝑛−𝑖
∞
𝑖=0 ; 

Therefore, the forecast error of the n-period is equal to the difference at time t+n of the realized 

value from its expected value at t+n:   

xt+n – Ext+n = ∑ 𝑏𝑖𝜀𝑡+𝑛−𝑖
𝑛−1
𝑖=0  

The n-step-ahead error variance for the {yt} sequence, for example, is thus 

𝑦𝑡+𝑛 − 𝐸𝑥𝑡+𝑛 = 𝑏11(0)𝜀𝑦𝑡+𝑛  
+ 𝑏11(1)𝜀𝑦𝑡+𝑛−1

+. . . +𝑏11(𝑛 − 1)𝜀𝑦𝑡+1
 

                                   +𝑏12(0)𝜀𝑧𝑡+𝑛  
+ 𝑏12(1)𝜀𝑧𝑡+𝑛−1

+. . . +𝑏12(𝑛 − 1)𝜀𝑧𝑡+1
. 

Then the n-step-ahead forecast error variance 𝜎(𝑛)2 of 𝑦𝑡+𝑛 is 

𝜎(𝑛)2=σ2
y[b11(0)2 + b11(1)2 + … + b11(n-1)2] + σ2

z[b12(0)2 + b12(1)2 + … + b12(n-1)2] 

We can use this equation to decompose 𝜎(𝑛)2 into the proportions due to each shock of the {yt} 

and {zt} sequences: 

{σ2
y[b11(0)2 + b11(1)2 + … + b11(n-1)2]} / 𝜎(𝑛)2 

{σ2
z[b12(0)2 + b12(1)2 + … + b12(n-1)2]} / 𝜎(𝑛)2 

The decomposition then shows the error variance due to own shock and that due to the other shock. 

Note the important implication that since all the values inside square brackets are non-negative, 

the variance of the forecast error increases as n→∞. If the shock in one sequence can explain all 

the forecast error variance at all forecast horizons, then the other sequence would be entirely 

endogenous. In applied work, it is typical that a shock from a variable explains almost all of the 

error at short horizons but decreasingly smaller proportions at longer horizons. We then expect εzt 

shocks to have small contemporaneous impact on yt but with increasingly bigger impacts on the 

{yt} sequence with a lag. Finally, note that the decomposition uses the same information as the 

reverse ordering but processes that information differently. If the identification is a minor issue 

because correlations among the innovations are small, then the two methods should yield similar 
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results; in general, the ordering approach is more popular, and it is not necessary to present the 

results by both methods.     

Readings 

For textbook discussion, see Enders (2015, chapters 5 and 6), Hamilton (1994, chapters 17, 18, 

and 19). Phillips (1954) proposed the ECM; Engle and Granger (1987) proved the equivalence 

between cointegration and equilibrium time-series.  
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Chapter 7 Stationarity, ARDL VAR & Impulse-Response Exercises 

Q7.1 Consider the following two-variable VAR model with one lag and no intercept, and 

contemporaneously uncorrelated error terms: 

Yt = β11Yt–1 + γ11Xt–1+u1t ~ WN (0, σy
2) 

Xt = β21Yt–1 + γ21Xt–1+u2t ~ WN (0, σx
2) 

a. What are the special features of this VAR model that permits the OLS equation-by-equation 

estimation of each equation? How would you justify the absence of the intercepts in this 

model?   

b. Show that the two-period-ahead forecast for Y starting back at period (t-2) can be written 

as Yt/t–2 = δ1Yt–2 +δ2Xt–2, and drive values for δ1 and δ2 in terms of the coefficients in the 

VAR.  

Q7.2   Suppose the residuals of a VAR are such that var(𝑒1)=0.75, var(𝑒2)=0.25, and 

cov(𝑒1, 𝑒2) = 0.25. 

a. Using (5.55)-(5.58) in Enders (2015) as guides, show that it is not possible to identify the 

structural VAR.  

b. Using the Choleski decomposition such that 𝑏12=0, find identified values of 𝑏21 

𝑣𝑎𝑟(𝜀1) & 𝑣𝑎𝑟(𝜀2). 

c. Using the Choleski decomposition such that 𝑏21=0, find identified values of  𝑏12 

𝑣𝑎𝑟(𝜀1) & 𝑣𝑎𝑟(𝜀2). 

Q7.3 Download lutkepohl12.dta again to analyze the impulse-response dynamic of the 1978 OPEC 

oil shock to US income, consumption and investment.  

a. Fit a 3-varaible VAR model and estimate simple and dynamic IRFs(exogenous unit change effect 

on endogenous variables over time); use Choleski ordering (dln_inv dln_inc dln_consump)and 

graph the shock from income (dln_inc) to consumption(dln_consump)over the subsequent 10 

periods. 

b. Change the Choleski ordering from shock to income to shock to (dln_inc dln_inv dln_consump), 

estimate a new IRF and put graphs and tables of estimates into the same file and comment on the 

outcome. 
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Chapter 8 Stationary Tests, Cointegration, Granger Causality & VEC Models 

Introduction 

The graphs in Figure 8.1 show four time series in terms of level and change over the previous 

period: GDP, inflation, federal funds rate, and bond rate. On the left panel based on levels, the 

GDP series trends upward, while the other three series wonder randomly either up, or down, or up 

and down. On the right panel graphs are obtained from one-period changes; the top two appear to 

show that the mean of the series changes over time, while the bottom two display a stable mean 

(around zero) over time. We call the first two series as non-mean reversion or non-stationary, 

and the bottom two as mean-reversion or stationary series.   

Forecasting requires a time series that is stationary around its mean; non-stationary series must be 

transformed into stationary series before we can use them to obtain reliable forecasts.  

Non-stationary time series have non-constant variance and may also have non-constant means as 

in figure (a). Such series do not converge; regression analysis with non-stationary series is 

misleading in suggesting relationships among series where, in fact, none exists.  That is, non-

stationary characteristics generates spurious correlations because the different unrelated series  

Figure 8.1 Stationary & Non-Stationary Time-Series 

may have a common random trend, for xample, GDP and the gold price appearing to move together 

only because inflation has a common effect on both time-series.    
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In this chapter we discuss testing for mean-reverting or the stationary characteristics of a time-

series process, also known as the Unit-Root Test for Integration. Moreover, stationary tests are 

also critical for both testing of macroeconomic theories and designing of public policies, since we 

must first establish whether there are genuine co-movements between two or more time-series by 

a Co-integration Test and if so, employ models known as the Error-Correction Models, that can 

quantify such co-movements.  

We need to recognize various type of non-stationary characteristics, test for the presence of these 

non-stationary characteristics, and learn how to convert non-stationary series into stationary series 

so we can apply the various models of time series analysis and forecasting we have examined so 

far.   

8.1 Unit Root Test of Integrated Series 

Start with AR (1) stationary model with the error term vt that is independent with mean zero and 

variance 2:   

yt=yt-1 + vt ||< 1 

when the yt series is stationary, that is,   tends to converge  to its long-run mean because of  ||< 1. 

Now contrast this special case AR (1) with =1:  

yt= yt-1 + vt =1   or (∆yt= vt)     (8.1.1) 

This is  a non-stationary series where each yt is equal to its value in the previous period yt-1 plus an 

unpredictable random shock. The series “wanders” around slowly up and down with no apparent 

pattern. Such a non-stationary process is known as the Random Walks Model (RWM). Note that 

optimal forecast with this model is independent of the forecast horizon: any shock that moves the 

series up or down also moves the forecasted values up or down the same way permanently (not 

diminishing). Unlike the shocks with AR or ARMA, the shocks with this model have permanent 

rather than decaying effects on the forecast. Such series do not have the property of mean 

reversion. The Random Walk Model provides the basis of various tests of non-stationary 

characteristics. 
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 For understanding the forecasting implication, we note that at time t, yt+1 is unknown 

random variable; the minimization of the expected squared forecast error is obtained from the 

probability of the conditional expectation of E(yt+1 | It) also minimizes the unconditional E(yt+1), 

for a random variable yt.  Both are equal because both are zero. That is, we have a sequence in 

which the past has no useful information about predicting the future. In general, such a sequence 

is known as a Martingale Differenced Series. The series takes its name from a Martingale 

Process in which at any point in time its expected value is equal to its most recent value, E(yt+1 | 

It) = yt; applying differencing of  such a series to both sides of this process renders a series equal 

to zero . However, a Martingale Differenced Sequence is a stronger condition than a Random 

Walks Sequence, in that the latter states that a serially uncorrelated sequence cannot be forecast 

on the basis of a linear function of its past values. A Martingale Differenced Sequence generalizes 

that to state that no function of past values, linear or nonlinear, can forecast the sequence. The 

RWM is employed to explain that the behavior of the financial time-series from one day to the 

next is completely random, and it also occupies an important place in modern Macroeconomics 

with some versions of the efficient market hypothesis maintaining that the market variables time-

series incorporate all past and current information. Past values have negligible ability to predict   

future behavior.         

i. There are three types of random walks 

1-Random walks with stochastic trend. By backward substitution (see the earlier notes on 

conversion of the MA and AR process into each other), we can re-write (8.1.1) as the starting value 

of the series plus the sum of all vt from each t period:  

yt=y0 + s=1
t vt. Since y0  0 (too far in the past), yt is determined by s=1

t vt component or its 

stochastic trend. To see why =1 violates the stationary conditions; examine its mean and 

variance: 

E(yt)=y0+ 
 E( v1+ v2+ …+ vt)= y0 

because vt are independent with mean zero. 

Var(yt)=Var( v1+ v2+ …+ vt)= tv
2       (8.1.2) 

That is, the series has a constant mean but its variance increases as t becomes larger.  
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2- Stochastic random walks with drift 

We can extend the stochastic trend model to account for a series that also displays “wandering” 

or drifting patterns by introducing an ”intercept” into the above model.  

yt= + yt-1 + vt  =1        (8.1.3) 

3-stochastic random walks with drift plus a deterministic trend 

We further extend (8.1.3) by adding a deterministic linear time trend for series with a pattern like 

the GDP in Figure 8.1 (c) 

yt=  + t + yt-1 + vt  =1       (8.1.4) 

 Following the same procedure as above, we can show non-stationary characteristics in 

this case in terms of a non-constant mean and variance of the series:  

E(yt)= +t and Var(yt)= tv
2. In this case, however, both the mean and variance are non-constant, 

both increasing with t.   
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The graphs above illustrate different types of stationary series: (a) is zero-mean AR(1), (b) has a 

constant non-zero mean, (c) wanders around by a fixed amount α, (d) is a random walk series, (e) 

a random walk that has a drift, and (f) has a drift plus a time trend. What separates the first three 

graphs and the last three is  <1 v. =1 (characteristic feature of random walk patterns)  

The key idea for converting a nonstationary into a stationary series: 

Why do series have stable mean in differenced form but not in levels? Start from the simplest case 

yt=yt-1+vt ; with independent vtN(0, 2) , then  yt =yt - yt-1=vt. Since vt is mean zero stationary, so 

is  yt; that is, working with differenced series rather than one in levels converts a nonstationary 

series into a stationary one. 

ii. Tests of non-stationary behavior  

There are many tests for the non-stationary behavior of a time series, but the Dickey-Fuller  

(DF) Test is the most popular and the one we use in this section of the course (but see below). The 

DF tests are based on (8.1.1), testing if =1. Such tests are known as unit root tests for stationarity; 

each version of the DF test corresponds to each of the three types of non-stationary random walks 

examined above.  

1-Test for the basic stochastic trend non-stationary series.  

It is more convenient to work with the first differenced version of (8.1.1) by subtracting yt-1 from 

both sides of (8.1.1): 

yt - yt-1= - yt-1 + yt-1+ vt → yt=( - 1) yt-1+ vt→ yt= yt-1+ vt   (8.1.5) 

where  = ( - 1).  

2-Test for a non-stationary stochastic trend series with drift. 

 yt=+  yt-1+ vt        (8.1.6) 

3-Test for  a non-stationary stochastic trend series with drift plus a deterministic trend. 

 yt=+ t +  yt-1+ vt       (8.1.7) 

In all three versions of the unit root tests the null and alternatives are:  
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Ho:  =1    =0 v. Ha:  <1    <0 

Since the interest is almost always in testing for  <1, the alternative hypothesis Ha is set up for a 

one-sided DF test. Note that the null is that the series is non-stationary, so rejection of Ho suggests 

the series is stationary while failure to reject it indicates it is non-stationary. Moreover, we cannot 

test non-stationarity with the standard t-test for   <0 because the increasing variance of a non-

stationary series with the sample size, as shown in equation 2 above, (t) changes the usual 

distribution of  the t-statistic. The DF tables provide the correct critical tau (τ) values that are 

smaller than the corresponding critical t values; see the table of DF critical values below.   

 

iii.   Augmented Unit-root Test 

Finally, another extension the DF test is to account for possible autocorrelation of the error term, 

and clear the residual of any serial correlation in order to ensure that we have a white noise error 

term (remember the consequences of the exclusion of relevant variables). If the model contains an 

insufficient number of lags, then add more first-differenced lags to remove the residual 

autocorrelation. For example, with two first-differenced lags, the DF test consists of  

 yt=0+ yt-1+ 1  yt-1+ 2 yt-1+vt 

where  yt-1= (yt-1 - yt-2) and   yt-2= (yt-2 - yt-3).  

This is called the augmented DF (ADF) test of stationary behavior; therefore, the ADF tests 

contain differenced lags, while the standard ADF employs lags in levels. The critical values for 

the null and alternative are the same as above, Ho : 𝛾 = 0 , depending on the presence of a drift 

and a time-trend in the test equation.  

Application example. First plot the series to check the type of non-stationary behavior; for 

example, if the series fluctuates around a non-zero mean, then (8.1.6) is appropriate, if it fluctuates 

around a linear trend, then apply (8.1.7). Below (8.1.6) is applied to the US federal funds rate 

series. 

 Ft =0.174 - 0.045 Ft-1+ 0.501Ft-1 

(tau) (- 2.505) 
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Note that the test employs the first-differenced Ft, but testing is on the coefficient of the lagged 

variable in levels, not on the coefficient of the lagged difference, as it must according to (8.1.1) 

above. The critical value for the DF test with drift but no time trend at 5% = - 2.86 < - 2.505 

(further below zero), so we fail to reject Ho:  =1    =0; we conclude the series is non-stationary 

, DF smaller negative (or positive) fails to reject, (see below).  

 iv.     ARIMA & Integrated series 

Re-write (8.1.1) as yt = (yt - yt-1)= vt. Since vt is independent with zero mean and constant 

variance2, the  yt series in first-difference is stationary, even though the original series in levels 

is not. This is an example of a non-stationary series made stationary by differencing. In this case, 

the stationary series is integrated of order one I(1), or “eye-one” for short. The order of 

integration is the minimum number of times a non-stationary series must be differenced in order 

to convert it into a stationary one, hence I(0) stands for a stationary series; I(1) is stationary in 

first-difference, etc. Such series are an extension of ARMA for which the series are defined in 

differences rather than levels and the model is called the Autoregressive Integrated Moving 

Average (ARIMA) Model. The ARIMA(p, d, q) is simply the ARMA(p, q) after differencing the 

series d times to make it a stationary series. In practice, we often employ I(0) and I(1) ARIMA, 

rarely, if ever, with I(2) ARIMA. Combined with low order I(d), ARIMA captures dynamic features 

of a time series remarkably well.  

An example may be applied to the federal funds rate to test if the first differencing of the federal 

funds rate (Ft=Ft – Ft-1) is stationary.  

First differencing of (Ft=Ft-1 + vt) results in  

 ( Ft )= -0.447  Ft-1. 

(tau) (- 5.487) 

The DF critical value with (5) at 5% = - 01.94> -5.487), so we reject the null of non-stationary, 

concluding, the series is stationary, the DF statistic is a larger negative than the critica value rejects 

the null. 
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 v.      Power of Unit-Root Tests 

How powerful are the DF unit-root tests? To answer this question, let us examine the variance of 

the RWM by transforming the model from AR into a MA sequence by backward substitution, using 

AR(1) for simplicity: 

yt=y0 + ∑ 𝜀𝑡
𝑡
𝑖=1  

The variance of this MA process is time-dependent, given the value of yt: 

Var(yt)= Var(εt, εt-1, … , ε1)=tσ2 & Var(yt-s)= Var(εt-s, εt-s-1, … , ε1)=(t – s)σ2 

That is the variance, Var(yt) ≠Var(yt-s), is non-constant (heteroskedastic); moreover, as t→∞,  

Var(yt) →∞, suggesting a random walk process  with no tendency to increase or decrease. The 

autocorrelation function of the above process is not covariance stationary, a key condition for 

linear forecasting; and  it is easily verified by forming the covariance of yt-s:      

E(yt – y0)(yt-s – y0)=E[(εt, εt-1, … , ε1)(εt-s, εt-s-1, … , ε1)]= E[(εt-s)
2 + (εt-s-1 )

2+ …  + (ε1)
2]= (t – s)σ2 

We obtain the correlation coefficient ρs as a result of dividing the covariance by the product of 

the standard deviations of yt & yt-s: 

ρs = 
(𝑡 – 𝑠)

√(𝑡−𝑠)𝑡
= [

(𝑡−𝑠)

𝑡
]0.5 

This result highlights the crucial weakness of the DF tests to detect a non-stationary series. It 

suggests, for the first few autocorrelations when the sample size is large relative to the number of 

lags, when s is small, the ratio (t-s)/t is approximately equal to unity but as s increases, ρs will 

decline, but only slightly. Applied to sample data, the autocorrelation function for a random walk 

process, is either unity (nonstationary), or declining slowly, that is, stationary but converging very 

slowly. That means we cannot always use the autocorrelation function of the unit-root test; it is 

not good at distinguishing between a unit-root process and a stationary process when the 

autoregressive coefficient is close to one. This is in part, due the weak power of the DF test. 

The power of a test is the probability of rejecting a false null hypothesis, equal to (1 – the 

probability of a type II error); a good power should reject the null of unit-root (non-stationary 

characteristic) when the series tested is, in fact, stationary. A simple Monte Carlo experiment can 
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demonstrate this. Suppose the data-generating process for {yt} is yt=a0 + a1yt-1 + εt where | a1 | < 

1. The power of the D-F unit-root test depends on the value of a1. Since the size of a0 is not 

important, it is set equal to zero, and the initial value of y0 is set equal to the unconditional mean 

of zero; we set a value for a1, e.g. 0.8. Next, estimate the series in this form: ∆yt=a0 + γ yt-1 + εt . 

Draw a {εt} random sequence from a standard normal distribution, and repeat the experiment 10, 

000 times. Then repeat this process at other values of a1 progressively closer to one. The table 

below shows the proportions (out of 10, 000 simulations) the DF unit-root tests reject such 

stationary processes at different values of a1, for different levels of confidence, 10, 5 and 1 percent, 

and falsely conclude a time-series as non-stationary. At a1= 0.8, the test result is quite reasonable; 

however, as the process remains stationary but with an autocorrelation coefficient with a value 

close to one. The power of the DF unit-root stationarity test diminishes very rapidly.  

A Monte Carlo experiment for rejection of Ho: γ at different values of α1 

a1 10% 5% 1% 

0.80 95.9 87.4 51.4 

0.90 52.1 33.1 9.0 

0.95 23.4 12.7 2.6 

0.99 10.5 5.8 1.3 

     

It is also a common practice to lower the confidence level threshold and conclude stationary with 

a DF critical value of 10% rather than a 5% significance level; it has also been found that a 

generous lag structure improves the power of DF test, so it is a good idea to check the test results 

with various number of lags to see if stationarity is supported. In such circumstances, we must try 

detecting a unit-root process with a more powerful test such as a KPSS test, or a test for unit-root 

by pooling time-series and cross section data that improves the power, as proposed by Im, Pesaran 

and Shine(2003); We examine such tests later.   

8.2 Cointegration 

We learned that a non-stationary process can be made stationary by differencing. Once the general 

consensus was that this approach is equally valid in a multivariate context, that is linear 

combination of two on-stationary series was also non-stationary. However, more recent 
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econometrics development has shown that a multivariate stationary state has a more complex 

structure. The tests of stationary structure with a vector of variables are designed to detect co-

movement among different variables, and are   known as the Cointegration Tests. Here we 

examine an extension of the DF test to the multivariate vector of time-series variables based on 

the regression residual obtained from correlation of the variable series, and will be explored more 

extensively next; in the context of the Error Correction Model of multivariate stationary series.    

 If the two non-stationary series xt and yt have a common stochastic trend, any linear 

combination of the two series, or their equation residual, would be stationary and the two series 

are said to be cointegrated. The DF test in this case is applied to the errors rather than the series 

themselves.  

tê = yt - o-2 xt, 

The test equation is 
tê = 

1
ˆ
−te + vt where 

1
ˆˆˆ
−−= ttt eee . Note that there is no constant if the 

mean of the residuals is zero even if the original series has a drift term. 

 We apply the DF test to the estimated values of the residuals since the error values are 

unobservable, and the DF tests based on the estimated residuals, then apply the DF critical values. 

Use the DF table critical values specifically obtained for cointegration tests depending on the type 

of non-stationary structures listed above. An example is the application to the relationship between 

the federal funds rates F and bond rates B (with drift)  

Bt=1.140 + 0.91 Ft, R
2=0.881. 

t  (6.584)  (29.421) 

The unit root test applied to 

et_hat=Bt_hat – 1.140 – 0.91 Ft . 

The residuals from this equation results in  


tê = -0.225

1
ˆ
−te + 0.254  

1
ˆ
−te  

tau      (-4.196) 

Note that the test is on the coefficient of the lagged variable, not on the differenced variable, since 

this is just an extension of (8.1.1) above; therefore, the same logic applies.  
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H0: residuals are non-stationary; the DF critical values for the cointegration test at 5%= -3.37> -

4.196, reject H0, namely, that the linear combination of the two series is stationary.  

Important implication: public policy effectiveness requires establishing first that Bt and Ft have a 

real relationship to each other; if Bt and Ft were spuriously correlated, then monetary policy would 

have little impact on the economy. 

i.Two remedies for non-stationary time-series 

1-Use first-differencing if the non-stationary series are of the difference stationary type, for 

example:   

yt= + yt-1 + vt made stationary by yt= + vt . 

2-Consider yt=+ t + vt. This is a trend stationary series since it is possible to convert it into a 

stationary series by “de-trending” it: yt - - t = vt
. This model is made stationary around a 

deterministic trend.   

 Cointegration addresses the question that arises if two series are genuinely rather than 

spuriously related to each other. The next equation is to understand which way the causal direction 

of the link between the two proceeds. To answer this equation, note that there are two possible 

ways to model how two variables yt and xt , say inflation and GDP, relate to each other: 

yt=10+11 xt-1+12 yt-1+et
y ; et

y  N(0, 2) 

xt=20+21 yt-1+22 xt-1+et
x ; et

x  N(0, 2) 

Because, in this model, everything depends on everything else,  parameters are determined 

simultaneously. However, the normally distributed residuals of each equation makes it possible to 

estimate this interdependent system of equations one-by-one as though the equations stands on 

their own and can thus each be estimated as a single equation.  This is an example of vector 

autoregressive or VAR with a two variable vector examined in notes below. In such cases, a 

special type of test called Granger-Causality is required to determine whether the direction of the 

effect is from x to y, or from y to x. That is why LH contemporaneous terms are excluded. 

8.3 Granger Causality Test  
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In time-series regression models, we may wish to know that lags of an independent variable have 

predictive power in addition to the other regressors in the model. The Granger Causality Test 

provides a useful F test of the predictive power of such variables: the null hypothesis is that the 

coefficients on all lags of that independent variable are jointly zero.    
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0  & H0: 1=2=…N=0 

The idea is to test that, after controlling for the effects of past values of yt-1, whether past values of 

xt have any impact on prediction future yt. Note carefully that the test employs only lagged 

variables as independent variables; it has no bearing on contemporaneous causality between xt and 

yt, and therefore we have no cross-sectional Ganger test since its application does not make sense 

to apply it to cross-sectional data.  

 The Granger test is a pair of F tests that run in opposite directions; first, we test that the 

coefficients on all xt-i are zero with yt as the dependent variable, and then we test that the 

coefficients on all yt-1 are zero with xt as the dependent variable. When x come in time before y, 

with significant estimated coefficients, then we say xt-i “causes” yt, or more accurately predicts the 

value of yt. In that case the first F test rejects Ho, but the second F test fails to reject H0: 

1=2=…N=0, that is y does not “cause” x. Granger tests can be useful particularly in the context 

of VAR model where everything causes everything else because every lagged variable is an 

independent variable in every equation. Building a simultaneous system of equations often requires 

simplifying the model by identifying those variables with no predictive power. Of course this is 

not a test of causality in the philosophical sense, for example, appearance of New Year cards do 

not cause the arrival of the New Year! It is merely a shorthand for saying xt-i are useful for 

prediction of yt. Moreover, the Granger causality test must not be mistaken for an exogeneity test; 

an exogeneity variable zt is unaffected by the contemporaneous values of yt, while the Granger 

causality tests for the effects of past values of yt  on the current value of zt (indirectly via zt-1). It is 

also possible to extend Granger causality tests beyond the bivariate VAR by adding more variables 

to the VAR system. For example, in a three-variable system with wt, zt, and yt, the test is whether 

lags of wt Granger cause either zt or yt. Such a test is called a block-exogeneity test since it tests 

the restrictions that all lags of wt in the zt, and yt  ∑ are equal to zero. This cross-equation restriction 

can be tested using the likelihood ratio test estimating the restricted and unrestricted variance-
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covariance matrix and obtaining the likelihood ratio test statistic given c, the maximum number of 

regressors in the largest equation 

(T – c)(ln | ∑r | - ln | ∑u |) 

This is a chi-squared test with df equal to 2p where p is the number of excluded wt lags.  

Example: We use U.S. seasonally adjusted housing starts (ST) and completions (CO) 1968-1996 

(absolute t-ratios in brackets), two key indicators of the U.S. business cycles; 4 lagged values. 

ST= 0.147 (3.32)+0.600 (10.76)ST_1+0.230 (3.16)+ST_2+0.143 (1.97)ST_3+0.008(0.12)ST_4+ 

0.032(0.31)CO_1− 0.121(1.16)CO_2− 0.021 (0.20)CO_3− 0.027(0.29)CO_4 

CO= 0.045 (1.76)+0.075 (2.09)ST_1+0.040 (0.94)+ST_2+0.047 (1.11)ST_3+0.082(2.13)ST_4+ 

0.237(3.95)CO_1− 0.206(3.41)CO_2+ 0.121 (2.56)CO_3+0/157(2.84)CO_4 

In this case, the F-statistic decisively rejects the null that there is non-causality from starts to 

completions, but interestingly the null for non-causality from completions to starts is also rejected, 

though much less decisively. So, in this example we have feedback effects: 

 

 

 

 

 

 

8.4 Vector Error-Correction 

The ARIMA allows for a flexible dynamic that regression-based analysis does not process, but at 

the expense of ignoring economic theory that identifies the long-run relationship between 

variables. Conventional consensus in pre-1980 econometrics was that all non-stationary series 

should be modeled as VAR. The more recent development special case of VAR can be modeled to 

contain both non-stationary and stationary variables. Extending the ARIMA to incorporate the lag 

relationship between time-series variables, generates a new model capable of showing that 

divergence from the long-run equilibrium sets in motion forces that change the estimates for the 

explained variables so as to bring the series back to equilibrium. Time-series models with both 
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stationary and non-stationary influences are known as the Error Correction Models (ECM) since 

they are all based on the long-term regression residual error between the variables. It turns out the 

residual from such time-series is co-integrated, hence the application of the ECM must start with 

a co-integration test. However, there are different approaches to testing and modeling such 

multivariate co-integrated series; we examine three of them here. The first approach due to Engle 

and Granger (1987), focused on the regression residual and established the link with co-integration 

and an error correction series; it is sometimes called the residual-based approach. The second, 

developed by Johansen (1988) relies on the rank and characteristic roots of the coefficient matrix 

of a multivariate VAR; and the third and the most recent employs a non-residual ADRL approach. 

We examine each in turn, starting with the residual-based approach. 

 i.       Engle-Granger ECM as co-integrated VAR 

Consider  

yt=0+1xt+2xt-1+3yt-1+t        (8.4.1) 

where xt and yt are measured in logarithms; economic theory suggests xt and yt will grow at the 

same rate, that is (yt-xt)=constant (except for a random t). Understanding how to incorporate the 

effects of equilibrium into equation (8.4.1) involves: 

a. obtaining expressions for the coefficients in equilibrium;  

b. rewriting (8.4.1) by manipulation so as to contain the equilibrium relationship within a dynamic 

structure that adjusts to divergences from equilibrium.     

Impose the long-run equilibrium conditions on (8.4.1) to obtain a. The long-run conditions are 

defined by the absence of short-run lag effects, so in the long-run we have yt=yt-1 and xt=xt-1; and 

t =0. Apply these restrictions to (8.4.1) and collect terms in yt & xt : 

(1– 3) yt = 0+(1+2) xt   yt = [0 / (1–3)] +[(1+2)/ (1–3)] xt (8.4.2) 

This suggests a one-period disequilibrium lag-away distance from the equilibrium, whent-1  0,  

is measured by  

yt-1 =[0 / (1 – 3)]+[(1+2)/(1 – 3)]xt-1+*
t-1  *

t-1=yt-1 – –xt-1    (8.4.3) 
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where 0/ (1 - 3)= and [(1+2)/(1 - 3)]=. 

With respect to b., rewrite (8.4.1) by subtracting – yt-1 from both sides, and by adding and 

subtracting 1xt-1 on the RHS. 

yt  – yt-1 =0+1xt+2xt-1+3yt-1 – yt-1 +1xt-1  – 1xt-1+t   

yt = 1xt +{0+(1+2)xt-1 – (1– 3) yt-1}+t    

yt = 1xt – (1– 3) {yt-1–0/ (1 – 3) –[(1+2)/(1 – 3)]xt-1}+t   (8.4.4) 

Finally, by substitution from (8.4.3) into (8.4.4) we have 

yt=1xt+{(3 – 1).(yt-1 – –xt-1)}+t or yt=1xt+{(3 – 1).*
t-1}+t    (8.4.5) 

 (8.4.5) is called the (EC) Error-Correction Model because it contains a term (*
t-1 ), 

defined by the expression inside the curly brackets, that measures the one-period divergence from 

equilibrium. It can be shown that in equilibrium, 1+2+3=1 implying that 3<1. The term *
t-1 

in (8.4.5) corrects for disequilibrium by the following dynamic: if the error in yt-1  grows positive 

too quickly, that is yt-1> – –xt-1, yt should fall and yt should be negative; while if the error in yt 

grows negative too quickly, that is yt-1< – –xt-1, yt should rise and yt should be positive. 

Therefore, the disequilibrium gap (8.4.3) forcing yt in (8.4.5) to correct the error and move the 

relationship between yt and xt closer to equilibrium.   

 ii.       Error-Correction Identified as Co-integration 

Note how the EC model (8.4.5) mixes two very different types of variables in differences and 

levels in the same equation. The EC term shows that if the variable in levels is I(1), the linear 

combination obtained from the regression of yt on xt is I(0), that is, the difference between yt and 

xt, namely the error term of the regression, should have a constant mean. This explains why the 

DF test for co-integration of the relationship between two time-series is applied to their error term 

rather than the series, and suggests a new meaning for co-integration, namely, that variables in 

equilibrium must be co-integrated. The co-integrated variables move together closely in the long-

run because they have a Common Trend. Be careful; if xt and yt are co-integrated, then xt-1 and  

yt-1 in (8.4.1) will be highly collinear, and there would be a temptation to drop one of them. This, 

however, would have a disastrous consequence for the EC model since we would remove the co-

integrating relationship and all the information it contains to improve forecast estimates.  
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An example is the difference between the long-run and short-term interest rates; that is, subtraction 

of the short-term rate from the long-term, called the term spread, has eliminated the trend in both 

of the individual rates. This suggests an alternative to removing non-stationary characteristic by 

differencing; namely, taking the difference between variables and testing if they are co-integrated. 

Suppose yt and xt are not stationary but are integrated in first-difference. If their linear combination 

yt-xt is integrated as I(0), then yt and xt are co-integrated. The coefficient  chosen to eliminate 

the common trend, often taken as =1, is called the Cointegration Coefficient, and (yt-xt) is the 

Eror-Correction Term.  

 

 iii.     Vector Error Correction (VEC) Model 

A major problem remains with a single-equation representation of the EC model. The model 

implicitly assumes that all of the explanatory variables are exogenous; that rules out cross-variable 

effects from yt to xt. In order to avoid a prior exclamation of exogeneity of the RH variables in 

(8.4.2), we adapt a more general simultaneous-equation for the EC model in terms of lagged values 

of all the other variables. We would then have a vector of single-equations in structures: 

∆𝑦𝑡 = 𝛽10 + 𝛽11∆𝑦𝑡−1 + ⋯+ 𝛽1𝑝∆𝑦𝑡−𝑝 + 𝛾11∆𝑥𝑡−1 + ⋯+ 𝛾1𝑝∆𝑥𝑡−𝑝 + 𝛼1 1
ˆ
−t

 
+ 𝜇1𝑡 

∆𝑥𝑡 = 𝛽20 + 𝛽21∆𝑦𝑡−1 + ⋯+ 𝛽2𝑝∆𝑦𝑡−𝑝 + 𝛾21∆𝑥𝑡−1 + ⋯+ 𝛾2𝑝∆𝑥𝑡−𝑝 + 𝛼2 1
ˆ
−t

 
+ 𝜇2𝑡 

where 
1

ˆ
−t

 
=yt-1-xt-1;  1 and 2 are the speed of adjustment coefficients, measuring how much of 

the previous disequilibrium error is corrected during one unit of time taken by moving from  

(t - 1) to t. We assume 1t~N(0,2) and 2t~N(0,2); and the two may be contemporaneously 

correlated, namely, cov(1t, 2t)0. This model is known as  the Vector Error Correction (VEC) 

Model. Note the key features of VEC: 

1-All variables, both on the RH and LH, are stationary, xt and yt differenced as I(1), and t=(yt-

xt) in linear combination of levels, I(0). 

2-At least one adjustment coefficient must be different from 0 to ensure short-term movements 

toward the equilibrium: 10 and/or 20.  
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3-VEC combines the long-run and short-run dynamics in a single model, something that is not 

possible with the VAR model.  

Note the contrast between the VEC model here and the single equation EC model (8.4.5). 

Solving a system of VEC equations one-by-one by OLS requires excluding current ∆𝑦𝑡 & ∆𝑥𝑡 for 

the same reasons discussed in the context of the VAR model. With a single equation OLS estimation 

of the EC model, variable interdependence is ruled out; ∆𝑦𝑡 & ∆𝑥𝑡  treated as exogenous (for more, 

see Dynamin Specification, Hendry, Pagan and Sargan (1992). 

A better understanding of the error correction dynamic can be obtained by examining the 

simplest form of the VEC, consisting solely of the error-correction term where all lagged variables 

in differenced-levels are assumed to be insignificant, and, therefore, dropped. 

Consider two non-stationary variables yt and xt that are integrated of order 1: yt~I(1) and xt~I(1), 

so yt=0+1x1+et in a co-integrated relationship, i.e., êt~I(0). The VEC in this case is 

∆𝑦𝑡 = 𝛼10 + 𝛼11(𝑦𝑡−1 − 𝛽0 − 𝛽1𝑥𝑡−1) + 
𝑡
𝑦 

∆𝑥𝑡 = 𝛼20 + 𝛼21(𝑦𝑡−1 − 𝛽0 − 𝛽1𝑥𝑡−1) + 
𝑡
𝑥 

(only the dependent variables differ). This can equivalently be written as a VEC model 

𝑦𝑡 = 𝛼10 − 𝛼11𝛽0 + (𝛼11 + 1)𝑦𝑡−1 − 𝛼11𝛽1𝑥𝑡−1 + 
𝑡
𝑦    (8.4.6) 

𝑥𝑡 = 𝛼20 − 𝛼21𝛽0 + 𝛼21𝑦𝑡−1 − (𝛼21𝛽1−1)𝑥𝑡−1 + 
𝑡
𝑥    (8.4.7) 

Therefore, both (8.4.6) and (8.4.7) equations contain the common co-integrating relationship. This 

requires − 1<11 0 and 0  211; therefore, both |11|< 1 and |21|< 1, but change in opposite 

directions so as to keep the VEC equation system from exploding, remain stable while moving it 

back towards equilibrium. Now consider et-1>0, similar to a simple EC examined above. The 

negative error-correction term (11) in the first equation (8.4.3) forces yt to fall while the positive 

one (21) ensures that xt rises, thereby correcting the error; the reverse happens when et-1<0.  

The graph explains the VEC dynamic to equilibrium for the co-integrated relationship 

y=o+x. At time (t-1), the system is at the point (xt-1, yt-1) and out of equilibrium by as much as 

*
t-1=zt-1>0. Given a gravitational pull of the co-integration/equilibrium relationship, the system 
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moves to the point (xt,yt) where xt has increased xt>0 and yt has decreased so yt<0. There is still 

disequilibrium, but now by a smaller amount zt>0.  From one period to the next, the system 

partially corrects itself until it reaches equilibrium defined by the line y=o+x on which t=zt =0.      

 

Figure 8.2 Adjustment to equilibrium by EC mechanism 

 

The Engle and Granger original definition of the ECM refers to co-integrated variables that 

each are of the same order of integration, typically either all I(0) or I(1).   

iv. Implementation 

To implement this approach, first test if the ECM is appropriate: 

1. If all series are individually integrated and also co-integrated, then the OLS is the 

appropriate estimator; the ECM is not relevant. If the series each are integrated but with a 

different order of integration, the Granger ECM cannot be applied (but ECM model of 

AEDL is applicable). 

2. If the series are not integrated and their linear combination is also not co-integrated, then 

the relevant model is VAR based on differencing, not the ECM.  

3.  If the series are not integrated but their linear combination is co-integrated, then the ECM 

is appropriate to apply.  

The application of VEC involves the following steps: 

First, estimate the long-run equilibrium relationship suggested by economic theory and generate 

the lagged residuals êt-1= yt-1-b0-b1xt-1.  

Second, test if the residual is co-integrated by the unit-root test.  
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Third, if the residuals pass the DF test of stationarity, include the lagged error term in a VEC in a 

system of equations expressed by (8.4.6) and (8.4.7) as the RH error-correction terms.  

Example: The quarterly real GDP of a small economy (Australia, A) and a large economy (USA, 

U). The graph residuals of real GDP indicate that both terms are non-stationary but quite possibly 

cointegrated. The unit-root tests confirm that both series are in fact non-stationary.  

 

To check for cointegration for steps 1 and 2 alone, the long-term relationship was estimated 

without an intercept (it has no meaning in this example):  

At=0.985Ut. 

Note that we normalize by A, that is, put a coefficient of At equal to 1, because a large economy is 

more likely to affect the behavior of a small economy, not the reverse. The residuals of the relation 

êt=At - 0.985Ut is shown in the graph below; they appear to have a zero intercept and no evident 

trend. 

 

Now for step 2 where we perform a formal unit-root and obtain 

êt=-0.128 êt-1 

tau (-2.889) 

Since the unit-root’s tau-value= -2.889<-2.76 the 5% value (remember to use the critical value for 

co-integration; not the single-series D-F -1.94), we reject non-stationarity. Thus, the two real GDP 
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series are co-integrated. This suggests a unit change in the GDP of the USA results in 0.985 of a 

unit change in Australia. To estimate how much of that change takes place within one quarter, we 

implement the third stage here and estimate the error-correction VEC model by the OLS: 

�̂�𝑡 = 0.492 − 0.099�̂�𝑡−1 

t  (2.077) 

�̂�𝑡 = 0.510 + 0.031�̂�𝑡−1 

t  (0.789) 

where there is a positive co-integrating error. The negative -0.099 indicates a fall in A, and a 

positive 0.031 indicates a rise in U. Together, the two adjustment coefficients correct the 

disequilibrium error. However, 0.03 is insignificant, suggesting U does not react to the co-

integrating error, but -0.099 is significant at 5%, therefore, at least one of the two adjustment 

coefficients is 0; this outcome is consistent with the view that a large economy affects a smaller 

one, and not the other way around.  

More general example: the relationship between the log of production and the log of consumption 

in the United States: the data set passed the unit root co-integration test, so estimate the 

disequilibrium error: 

logYt=0.84+.95logCt+z*
t    z*

t = logYt−0.84−.95logCt 

The application of Schwarz model selection picks two lags of  logYt and two lags of 

logCt, therefore, we estimate a VEC(2) system with a disequilibrium term obtained in 

i. The table below illustrates the outcome. 

Note that the adjustment coefficient is not statistically significant in the consumption 

equation (you can tell that this is the case, given that the size of  the coefficient is nearly 

zero); therefore, it is mainly the movement in production that forces the system towards 

equilibrium. This suggests that in the unit time period (in a quarter), 11% of the 

disequilibrium error is corrected. Note also that the dynamics of production (lagged 

values) are important in consumption series and vice versa, that is, the first lags are 

significant in both equations.  

Engle & Granger (Econometrica, 1987) proved that equilibrium and co-integration are 

equivalent conditions; that every co-integrating relationship represents an equilibrium 
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relationship. The link between co-integration and error correction models is known as the 

Granger Representation Theorem: 

Consider two I(1) series yt and xt, both with unit root processes (in levels). If yt and xt 

are co-integrated, then: 

1-There exists a linear combination such as zt=yt-0-xt that is a stationary process I(0). 

2-There exists an error correction representation as 

∆𝑥𝑡 = 𝑐1 + 𝛾𝑧𝑡−1 + 𝛽11∆𝑥𝑡−1 + 𝛽12∆𝑥𝑡−2 + ⋯+ ∅11∆𝑦𝑡−1 + ∅12∆𝑦𝑡−2 + ⋯+ 𝜀𝑡 

 

The question is what to do if the co-integration unit-root test indicates that long-run relationship 

between xt and yt is not stationary? We have already examined this case in detail: If x and y are not 

co=integrated, we have to estimate a vector autoregressive (VAR) model in first-differences.  

Generalizing the above to the n-variable model: 

∆𝑥𝑡 =  π0 +  π𝑥𝑡−1 +  π1∆𝑥𝑡−1 +  π2∆𝑥𝑡−2 + ⋯ +  π𝑝∆𝑥𝑡−𝑝 + 𝜀1𝑡   (8.4.8) 

Where  π0 = (n.1) vector of intercepts with  π𝑖0 elements 

 π𝑖 = (n.n) coefficient matrices with elements  π𝑗𝑘(i) 

 π = a matrix with elements 𝛾𝑗𝑘 such that one or more of the  π𝑗𝑘≠0 

𝜀𝑡= (n.1) vector with elements 𝜀𝑖𝑡 

Let all x variables be I(1); the linear combination of the I(1) variables is stationary.  Write (8.4.8) 

in compact form and solve for 𝛾𝑥𝑡−1: 

 π𝑥𝑡−1 = ∆𝑥𝑡 −  π0 − ∑ π𝑖∆𝑥𝑡−𝑖 − 𝜀𝑡 

a. If all elements of  π are zero, ∆𝑥𝑡 does not respond to the deviation from equilibrium in the 

last period; therefore, there is no error-correction representation, and a usual VAR in first 

differences is applicable. 

b. If one or more  π𝑗𝑘differ from zero, ∆𝑥𝑡 does respond to the deviation from equilibrium in 

the last period. Therefore, 𝑥𝑡 has an error-correction representation, and estimation of VAR 

in first differences is inappropriate.  
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We note that in a bivariate error-correction model, the rows of π are not linearly independent if 

the variables are co-integrated. This suggests we use the rank of π, that is the number of its 

independent rows, to determine co-integration. This is the insight of the Johansen (1988) approach 

we examine next.  

8.5 Johansen unit root by characteristic roots 

Going beyond the univariate, residual-based approach to co-integration testing and VEC modeling, 

there should be a broader alternative when examining a multivariate set of time-series for co-

integration. This generalizes of the DF tests and residual-based VEC to a multivariate system of 

time-series variables; the fundamental core of the Johansen (1988) unit root test for co-integration 

is formulated in terms of the relationship between the rank of a matrix and its characteristic roots. 

Building on that relationship enables the Johansen procedure to provide a multivariate 

generalization of the Dicky-Fuller method.  

i. Johansen Unit Root Tests 

Take the univariate case of a yt series where stationarity is tested on the magnitude if the coefficient 

of yt-1 

yt=α1yt-1+εt 

adding and subtracting yt-1 to the left-hand of this relationship leads to the standard DF test equation 

∆yt=(α1-1)yt-1+εt 

 (α1-1)=0 for a {yt} unit root process, and (α1-1)≠0 for a stationary {yt}. Generalize this to an n-

element vector of x variables yields 

xt=A1xt-1+εt 

where A1 is an (n.n) matrix of parameters, and xt & εt are (n.1) vectors.  The DF version of this 

multivariate equation would be 

∆xt=A1xt-1 -xt-1 +εt= (A1 – I)xt-1+εt=πxt-1+εt 

with  π=(A1 – I) & I is an (n.n) identity matrix. The rank of π=(A1 – I) is equal to the number of its 

distinct cointegrated vectors; hence if π=(A1 – I)= 0 all the {xit} processes are unit root and thus 
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not cointegrated, while if π=(A1 – I)= n, then all the variables are stationary if we exclude 

characteristic roots greater than 1 to ensure a convergent system of difference equations.  

  The basic Johansen procedure can be generalized to include a drift term for the possibility 

of a linear time-trend in the data-generating process and allow for higher order autoregressive 

terms for an augmented unit root test. For a drift modification, let 

 ∆xt=A0+πxt-1+εt 

Where A0 is a (n.1) vector of constants (α10, α20, … αn0)
/. The drift term should be included if the 

plot of the series suggests a clear pattern of increase or decrease over time; in this case, the rank 

of π is equal to the number of “de-trended” long-run relationship among the system of variables. 

The augmented Johansen test is written as 

 ∆xt=πxt-1+∑ 𝜋𝑖∆𝑥𝑡−1
𝑝−1
𝑖=1 +εt 

where π= - (1 - ∑ 𝐴𝑖
𝑝
𝑖=1 ) and πi= -∑ 𝐴𝑗

𝑝
𝑗=𝑖+1  . Once again, the rank of π determines the number of 

independent cointegrated vectors; if rank(π)=0, the above is the VAR model in first differences, 

while if rank(π)=n, the above is the ECM model with all vectors cointegrated. An intermediate 

case is presented by rank(π)=1 when there is just a single cointegrated vector with πxt-1 as the EC 

term. However, in general when 1< rank(π)< n , there will be multiple and distinct cointegrated 

vectors and Johansen procedure provides two different methods of checking the significance of 

the characteristic roots for this general case. The matrix π has n characteristic roots ordered as 

𝜆1> 𝜆2>… > 𝜆n; if the rank is one, there will be only one cointegrated vector and the rest I(1) 

processes, hence 0< 𝜆1<1. Then with no cointegration,  𝜆n=0 & ln(1)=0, we can obtain the 

difference between the first and other vectors as ln(1- 𝜆1)<0 when 0< 𝜆1<1 and ln(1- 𝜆 2)=  

ln(1- 𝜆3)=… = ln(1- 𝜆n)=0 when 𝜆I >1 (all non-stationary).  

After obtaining the estimates of π and solve for its characteristic roots (see appendix on 

how to solve for the roots (eigenvalues) of a characteristic equation), the Johansen procedure tests 

for e number of characteristic roots 𝜆i insignificantly different from unity by computing two 

different test-statistics.  

λtrace (r)= - T ∑ 𝑙𝑛 (1 − �̂�𝑖
𝑛
𝑖=𝑟+1 ) 



 134 

λmax (r, r+1)= - T 𝑙𝑛 (1 − �̂�𝑟+1) 

where ˄ indicates the estimated values of characteristic roots, T is the number of observations, and 

r is the rank of π.  The procedure tests the null that the number of distinct cointegrated vectors are 

greater or equal to the rank of the matrix against a general alternative.   (r)=0 if all  𝜆𝑖=0; the further 

from zero, the more negative 𝑙𝑛 (1 − �̂�𝑖), and the larger the λtrace statistic. λmax test for number of 

cointegrated vectors=r against the alternative of (r+1); as before, if the estimated characteristic 

root is close to zero, λmax will be small. The critical values of λtrance and λmax have non-standard 

values that depend on a) the number of non-stationary components (n-r) under the null hypothesis 

of stationarity, b) on the form of A0: no constant or drift, with a drift for a time-trend, and with a 

constant intercept.    

Example: demand for money from Johansen and Juselius (1990) as a linear function of (log) real 

income, and real money supply, bond rate and interest rate on saving (T=53), 4 by 4 matrix of 

eigenvalues with 4 variables. Take second column for λmax; for λ4 we have 2.35= -53*ln (1-0.0434); 

for λ3=6.34=-53*ln(1-0.1128); however, the third column shows λtrace  statistics as simple 

arithmetic sums, hence λ2 for example, we have 19.5=2.35+6.6.34+10.36, etc. 

 λmax λtrance 

λ1=0.4332 30.09 49.14 

λ2=0.1776 10.36 19.05 

λ3=0.1128 6.34 8.69 

λ4=0.0434 2.35 2.35 

Sum total 49.14  

 First with λtrace statistic, we test Ho: r=0 against the most general HA: r=1, 2, 3, or 4 (here 

n=4) by comparing the sum of the four eigenvalues =49.14 (tests no cointegrating vector against 

all cointegrated) with the Johansen characteristic root critical values for (n - r) =0 (with a constant 

included) and for significance levels 10%=49.65, 5%=53.12 and 1%=60.15. The restriction is not 

binding; the variables are not cointegrated. To take another example, Ho: r ≤ 0 against a less 

general HA: r=2, 3, or 4 with (n - r) =3, with λmax statistic summed over 2 to 4 is equal to 19.05, the 

corresponding critical values are 10%=32.00, 5%=34.91 and 1%=41.07. Hence, the test shows that 

the restriction =0, or r=1 is not binding; once again no cointegrated series in this study.  
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 Second with λmax in contrast, we test for an specific HA, namely Ho: r=0 against HA: r=1; 

the computed value for λmax(0, 1)=-53*ln(1-0.4332)=30.09. The critical values for (n-r) =4 are 

25.56 (10%), 28.14(5%) and 33.24(1%). Thus at 5% or even 10% we can reject the null and 

conclude that there is one cointegrated vector, i.e. r=1. However, check why Ho: r=1 against HA: 

r=2 cannot be rejected for practice.  

 This example shows that the λmax & λtrace can lead to conflicting test conclusion, but since 

λmax test has a more specific and focused HA, it can identify the exact number of cointegrated 

vectors and thus is regarded as more reliable. 

ii. Modelling Trend and intercept by Johansen Procedure 

Once the Johansen cointegration is confirmed, further tests for parameters can be carried out. An 

issue that can be dealt with by reformulating the Johansen model employed is the modelling of the 

drift and intercept terms. The inclusion of various drift terms αi0, when the variable displays a clear 

tendency to increase or decrease, permits the presence of a linear time trend in the data-generation 

process. In this case, we have the “detrended” cointegrated vectors, with the long-run πxt-1=0, 

hence each {∆xit} sequence has an expected value of αi0 and aggregation of all such changes over 

t give the deterministic value αi0t. However, if the inclusion of a constant intercept is warranted, 

then it would hard to identify the intercept from the trend effects separately. One solution is to 

manipulate the elements of A0 so as to include a constant without affecting the deterministic time 

trend of the system of equations. For instance, if rank (𝜋)=1, the rows of each sequence can differ 

only by a scalar, thus for each sequence, αi0 can be restricted so as to have αi0= Siαi0  for all {∆xit}. 

This in effect purges the linear trend from the system in favor of a general solution for all {∆xit}. 

For example, for two data generating process with α10 and α20 trend, if we restrict α10= - α20, as 

α10=1 & α20= -1 for Si= -1, then the drift trend will be removed but the deterministic time trend. If, 

however, the plot suggests a including a drift term and economic theory supports a cointegration 

vector with an intercept, then the intercept of the relationship is not identified and an identification 

method is necessary. A commonly employed method is to identify the portion belonging to the 

cointegrating vector as the amount necessary to produce an EC term with a sample mean zero. 

Otherwise, most studies include a drift term if data displays one, or either include a drift or a 

deterministic trend, but not both. If both should be included in the cointegrating vectors, then we 

must test to see if the drift we can be suitably restricted.   
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iii. Hypothesis Testing with Johansen Procedure. 

An advantage of the Johansen method over the DF is that it permits restricted forms of the 

cointegrated vectors. The key about the Johansen strategy of testing parameter restrictions is that 

with r cointegrating vectors, there can only be r stationary linear combinations. That implies that 

if the restrictions are not binding, the number of cointegrating vectors must not decrease; that is, 

the difference between the restricted and unrestricted models should be small. For instance, in a 

system of four potentially cointegrated equations with two cointegrated vectors with just two 

cointegrated vectors, we test for cointegration by impose cointegration restriction on all four 

vectors and then again on just on two of the four. The difference between the two eigenvalue 

vectors will be insignificant if the restrictions are not be binding on the remaining vectors (these 

are not stationary); if the difference is significant, then the restrictions is binding and there are 

more than two cointegrated relationships.   

First, suppose we want to test for the presence of an intercept as opposed to an unrestricted 

drift A0. Then, estimate the model in two forms, and order the characteristic roots, unrestricted and 

restricted (with a constant) π: �̂�1,�̂�2,…,�̂�𝑛 & �̂�1∗,�̂�2∗,…,�̂�𝑛∗. Assuming the none restricted model has 

r nonzero roots, 

- T ∑ [𝑙𝑛 (1 − �̂�𝑖∗
𝑛
𝑖=𝑟+1 ) - 𝑙𝑛 (1 − �̂�𝑖)] 

This test statistic has an asymptotic 𝛘2 distribution with (n-r) restrictions. The idea behind the test 

is that if the restriction is not binding, the above difference should be small, hence acceptable to 

include a constant; otherwise rejection would imply the presence of a linear time-trend.  

Second, other restrictions, the Johansen defines two matrices α for speed of adjustment 

parameters and β for cointegrating parameters, both with (n.r) dimensions such that π= α β/ 

The presence of cross-equation restrictions makes the estimation non-linear in parameters and 

unsuitable for OLS application, however the maximum-likelihood method can provide estimation 

of β/ to allow selecting α so as to make π equal to α β/. One way to restrict α is to allow rows of π 

to differ only by a scalar. This is easy to see in application of a single cointegrating vector that 

makes the rows π all linear combinations of each other: 

∆x11= π11x1t-1+ π12x2t-1+…+ π1nxnt-1+…+ε1t 
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∆x21= s2(π11x1t-1+ π12x2t-1+…+ π1nxnt-1)+…+ε2t 
. 
. 
. 

∆x11= sn(π11x1t-1+ π12x2t-1+…+ π1nxnt-1)+…+εit 

where si are scalars, and the matrices   are left out notational for simplicity. Now, defining αi= 

si.π11 and βi= π1i/ π11 allow each equation to be rewritten so as to have π= ∆xt=πxt-1++εt
 : 

∆xit= αi (x1t-1+ β2x2t-1+…+ βnxnt-1)+…+εit   

or in compact form as identical to the model above a 

∆xt= α β/xt-1+∑ 𝜋𝑖∆𝑥𝑡−1
𝑝−1
𝑖=1 +εt 

Where vector of cointegrating parameters β=(1,  β2,  β3, …, βn)/ and speed adjustment parameters  

is presented by α=(α1, α2, …, αn)/ identified as the coefficients of x1t-1 in each vector.  

Third, with α and β/ estimated, we can then test restriction on each vector separately. To 

test restriction on β, we solve for the restricted and unrestricted characteristic roots and compute 

the log difference statistic as above; the restriction is binding if the statistic is greater than the 

critical 𝛘2value. 

Example of testing β/ restrictions: Johnsen and Juselius (1990) impose the restriction that money 

and income move proportionally. They normalize on the coefficient of income (set equal to unity) 

and, given the unrestricted model has r=1, obtain unrestricted −𝑇𝑙𝑛 (1 − �̂�𝑖)=30.09 as above; while 

restricted �̂�𝑖∗==0.433 and +T 𝑙𝑛 (1 − �̂�𝑖∗)= ln(1-0.433)*53= - 30.04. Since there is one restriction 

imposed on β, and given df=1, the difference between the two equal -30.04 - (-30.09)=0.05 < 𝛘2
df=1 

critical values, so the restriction is not binding. 

Finally, example of testing restrictions α: suppose we test for the hypothesis that only 

money demand, not consumption, responds long-run deviations from equilibrium, so we test for 

α2=α3=α4=0 restriction. We rely on the same testing method. The largest estimated characteristic 

root in the restricted model is -23.42 and the difference with the unrestricted model equals -23.42- 

(-30.09)=7.67 <  𝛘2
df=1 critical values, the restriction still not binding.  

We can follow this testing strategy further with another issue: to test for the presence of 

more than one cointegrated relationship among the variables, for example, when to test for the 
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presence of two cointegrated relationship among four variables. In theory we can test each pair of 

variables for cointegration by restricting the individual cointegrating vectors. In practice, the 

interpretation of the outcome would not be easy; it would be hard to reconcile the simultaneous 

cointegrated with separate equilibria processes, or when the separate cointegrated unit root test 

contradict each other. Another problem with estimation and testing in a multivariant system is the 

greater potential of misspecification error in one cointegrating vector to affect the other vectors. 

This suggest for a single cointegrating relationship, the Engle-Granger residual-based and 

Johansen unit root tests have asymptotically the same distribution; however, the former is superior 

since it is much more robust to misspecification and to processes with non-integer unit roots. 

Readings 

For textbook discussion, see Enders (1915, chapters 5 and 6), Hamilton (1994, chapters 17, 18, and 19). 

Phillips (1954) proposed the ECM; Engle and Granger (1987) proved the equivalence between cointegration 

and equilibrium. Granger (1969) proposed the causality test; Johansen (1988) developed the rank-based 

cointegration tests. 
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Chapter 8 Stationarity Tests, Cointegration, Granger Causality & VEC Exercises 

Q8.1 Suppose you estimate  to be: 

 = [
0.6 −0.5 0.2
0.3 −0.25 0.1
1.2 −1.0 0.4

] 

a. Show that the determinant of  is zero. 

b. Show that two of the characteristic roots are zero, and that the third is 0.75. 

c. Let =(3  -2.5 1) be the single cointegrating vector normalized with respect to x3. 

Find the (3 x 1) vector a such that =. 

d. Show that the three characteristic roots are: (0.0, 0.5, and 0.9)  

Q8.2 Suppose that 𝑥1𝑡& 𝑥2𝑡are integrated of order 1 & 2, respectively. The answers to the 

following questions provide a sketch the proof that any linear combination of 𝑥1𝑡& 𝑥2𝑡is 

integrated of order 2. 

a. Allow 𝑥1𝑡& 𝑥2𝑡to be the random walk processes: 𝑥1𝑡 = 𝑥1𝑡−1 + 𝜀1𝑡, & 𝑥2𝑡 = 𝑥2𝑡−1 + 𝜀2𝑡   

i. Given the initial conditions 𝑥10 & 𝑥20, show that the solution for 𝑥10 & 𝑥20 have the 

form 𝑥1𝑡 = 𝑥10 + 𝜀1𝑡−1, & 𝑥2𝑡 = 𝑥20 + 𝜀2𝑡−1. 

𝒊𝒊. Show that the linear combination 𝛽1𝑥10 + 𝛽2𝑥20 will generally contain a stochastic 

trend. 

           iii.       What assumption is necessary to ensure that 𝑥1𝑡 & 𝑥2𝑡are CI (1, 1)? 

b. Now let 𝑥2𝑡be integrated of order 2. Specifically, let ∆𝑥2𝑡 = ∆𝑥2𝑡−1 + 𝜀2𝑡. Given initial 

conditions for 𝑥20 & 𝑥21, find the solution for 𝑥2𝑡. [you may allow 𝜀1𝑡& 𝜀2𝑡to be perfectly 

correlated] 

i. Is there any linear combination of 𝑥1𝑡  & 𝑥2𝑡that contains only a stochastic trend? 

ii. Is there a linear combination of 𝑥1𝑡  & 𝑥2𝑡that only contains a stochastic trend? Is there 

any linear combination of𝑥1𝑡 & 𝑥2𝑡that does not contain a stochastic trend?  

c. Provide an intuitive explanation for the statement: if 𝑥1𝑡& 𝑥2𝑡are integrated of order 

𝑑1& 𝑑2 where 𝑑2 >  𝑑1, any linear combination of 𝑥1𝑡& 𝑥2𝑡is integrated of order  𝑑2. 

Q8.3 Download usa.dta and use the interest rate series for f (federal fund rate) and b(bonds rate). 

a. Test f and b by DF procedure ffor unit roots in levels and in 1st differences.  
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b. Test for unit root by kpss procedure in levels and in 1st differences. 

 

Q 8.4 Download lutkepohl2.dta, Quarterly SA West German macro data 

a. Test ln-ivn, ln_inc and ln_consump series for unit root by DF procedure inclusive of the correct 

number of lags. 

b. Fit a system of 3-equation, first-differenced VAR model with 2 lags from 1978q4 onward, 

request sic and aic values (lutstats), correction for small sample df.(dfk). 

c. Include and treat ln_inv variables as exogenous. 

d. Fit the model in c. with additional constraints of 2nd lags of dln_inc & dln_consump excluded. 

 

Q8.5 Download usa.dta of inflation & GDP time-series. 

a. Fit a 2-equation VAR model of inflation and GDP with 1-4 lags, and each model for Granger 

causality.  

b. Test the output for Granger causality with models of 1-4 lags. 

c. Now fit the same 1-4 lags VAR system in first differences and test each model for Granger 

causality.   

 

Q8.6 Download gdp_US_AS.dta, the data set gdp_US_AS.dta contains the gdp time series of USA  

(usa) and Australia (aus). Implement the following steps to test for cointegration and estimate an 

Engle-Granger VEC model 

a. Obtain the graph of the two time series variables to check for any pattern of co-movements 

between them. Test for cointegration between the two after selecting the correct number of lags. 

Why you might or not include a drift term in your Dicky-Fuller statistic and comment on the test 

outcome?  

b. Select the correct number of lags for a system of two interdependent equations usa and aus, 

and estimate a VEC model. What are the error correction adjustment coefficients? 

c. Interpret the coefficient estimates; which series makes the adjustment toward equilibrium and 

at what speed? 

Q8.7 Download txhprice.dta for housing prices in 4 major cities of Texas. Implement the 

following steps to test for cointegration by Johansen method, then estimate VEC models. 
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a. Regress VEC model for Dallas house prices on Houston house prices as a two-equation model 

with correct number of lags, examine its residual time-series for cointegration; provide an 

interpretation of Johansen rank-order cointegration test.  

b. Now fit a 4-equation model test for the number of cointegrated series by the Johansen procedure, 

using 3-lag equations.  

c. Estimate VEC models for step a. and b. equations.   
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Chapter 9 ARDL, Panel Unit-root, ECM & ARFIMA 

This short chapter provides a more complete discussion of VEC estimation and unit-root testing of 

integrated series not dealt with so far.  We first examine an alternative approach to the estimation 

of co-integrated series incorporating information on the exogenous status of some parameters of 

the VEC system of equations. We, secondly, address a solution involving a more powerful 

integration test by exploiting additional information available from cross-section data. We can test 

for co-integration and estimate a VEC model using either the residual-based or rank-based 

approaches if the variables are jointly determined, and their interdependence makes it hard to 

identify the dependent and the independent variables. However, in other circumstances, that 

distinction may be clear from making some of the variables exogenous; there are potential benefits 

in incorporating such information into a VEC model. The ADRL model of VEC discussed in section 

9.1, is the appropriate approach in such cases. Moreover, sometimes we can combine cross-section 

data with time-series to generate a panel series, which is a time-series of repeated observations on 

a cross-section of countries or states. The extraction of the cross-sectional mean of the panel from 

the individual time-series can offer a more powerful test of integration; it is discussed in section. 

9.2.  

9.1 ARDL VEC 

Let us specify what exogeneity is with a simplest bivariate VEC(1, 1) model with no lag short-

term structure in reduced form rather than structural form: 

∆yt=a1(yt-1 – βzt-1) + e1t      (9.1.1) 

∆zt=a2(yt-1 – βzt-1) + e2t      (9.1.2) 

We write the relationship between the structural shocks and reduced form error terms (see 

section 7.2 VAR regressin model) as 

 

[
𝑒1𝑡

𝑒2𝑡
] = [

𝑐11 𝑐12

𝑐21 𝑐22
] [

𝜀𝑦𝑡

𝜀𝑧𝑡
] 

In the structural VAR, the shocks are uncorrelated; therefore, E εyt εzt=0, however, E e1t e2t ≠ 0 

and in general is correlated if c12 and/or c21 differ from zero. Let the two reduced form error terns 

be related as  

e1t=ρe2t+vt        ,(9.1.3) 

vt is the innovation in e1t; therefore, e2t and WN vt are uncorrelated. This is, in fact, a Choleski 

decomposition employed with respect to the two error terms in (9.1.3); ∆zt  does not respond to 
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innovations in ∆yt, but ∆yt responds to innovations in ∆zt . Substituting (9.1.3) and (9.1.2) into 

(9.1.1) results in 

∆yt=a(yt-1 – βzt-1) +ρ∆zt + vt       (9.1.4) 

where vt is the difference between the two sides of (9.1.3), e1t a function of zt by (9.1.1), and   a=a1 

– ρa2.. (9.1.4) cannot be estimated by the OLS because of the simultaneity problem caused by the 

correlation of ∆zt with vt. That aside, the OLS estimation of a cannot separately identify a1 and a2. 

However, we can specify the conditions under which the simultaneity and identification problems 

are removed and the OLS estimates are efficient; namely, if a2= 0 (zt does not respond to 

disequilibrium discrepancy), and c21=0 (zt does not respond to εyt). Taken together, the two 

conditions make zt weakly exogenous and causally prior to εyt. A variable that does not respond to 

deviations from equilibrium is called weakly exogenous, that is, its speed adjustment coefficient 

in the VEC model is zero. We can then write the VEC in an alternative  

∆yt=β1yt-1 + β2zt-1 + β3∆zt + vt      (9.1.5) 

The coefficients of (9.1.5) are unrestricted and the error-correction model in this unrestricted form 

is called ARDL to distinguish it from the ECM form. Although (9.1.1) and (9.1.5) are equivalent 

representations, (9.1.5) contains both ∆zt  and vt    Estimates by (9.1.5) have smaller variance and 

more precise parameter estimates. A second benefit of ARDL is that short-term dynamics are not 

constrained by the long-term equilibrium dynamics since yt-1 and zt-1 are unrestricted; unlike the 

Engle-Granger and Johansen approaches that force ∆yt to be a constant proportion of last period 

disequilibrium.      

9.2 Integration Test with Heterogenous Units 

The standard tests of co-integration such as the Dicky-Fuller based on the null of stationarity have 

weak power and are often unable to distinguish between co-integrated and non-co-integrated 

series, with downwardly biased test statistics. There are several ways to improve the low power of 

AD and Johnsen unit roots tests; by relying on information provided by panel data series of pooled 

time-series and cross-sectional information, by employing a test with the stationarity as the null 

hypothesis, as with the KPSS test, and yet another solution is to apply unit root tests to models 

based on slow convergence, fractional differencing, examined in chapter 14 when discussing 

spectral analysis. Here we focus on panel series; for KPSS, see exercise Q8.3. 
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Most Macroeconomic time-series are affected by one or more common unobserved shocks. 

Suppose we can apply the unit root test to 1, 2, …n series, each observed over 1, 2, …T time periods 

yit with an ADF test of the form written as  

∆yit=αi0 +ϒiyit-1 + αi0t + ∑i
j=1βij ∆yit-j + εit   ;  i=1, 2, …n   (9.2.1) 

where we have included a time-trend variable, though if added, it should be included in all a single 

equation.  Moreover, since different series may have a different lag structure, testing for lag length 

should be done separately for each series. Testing for panel unit root assumes contemporaneously 

uncorrelated error terms; if E(εit εjt)≠0, that effect can be contained by estimating (9.1.1) in mean-

deviations forms with ∆�̃�it and ∆�̃�it-1, and then we can apply the test for unit root to (9.1.1) in mean-

deviations forms.  

However, the application ADF tests to a panel series faces an asymmetric problem that does not 

exist in non-panel contexts.  Suppose we wish to conduct a panel unit root test. Most tests are 

based on the null hypothesis of having a unit root. Rejection would imply a stationary series, that 

is all n time-series are independent random walks.  

Ho:  ϒ1=ϒ2=…=ϒn=0 

The formulation of the alternative hypothesis, however, depends on assumptions made about the 

homogeneity/heterogeneity of the panel. With the assumption that the autoregressive parameter ϒi 

is identical for all cross-sectional units, that is cross-sectionally pooled, the alternative hypothesis 

would be  

Ha
1: ϒ1=ϒ2=…=ϒn= ϒ1=ϒ2=…=ϒ & ϒ > 0 

The problem with a formulation based on Ha
1 is the likelihood of frequent rejection even if a few 

of the i series are stationary, rendering the test results unconvincing. There are time-series for 

which the homogeneity is an inappropriate assumption; for instance, the PPP hypothesis provides 

no support for homogeneity of ϒi=ϒ. The other extreme alternative hypothesis would be to assume 

that at least one of the n series is stationary.   

Hb
1: ϒi < 0 for at least one i. 
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With large n and T, the loss in degree of freedom with Hb
1 would be costly; the panel unit root 

tests would lack power unless n is relatively small. More recent developments consider alternatives 

that are between Ha
1 & Hb

1 with a more appropriate heterogeneity null as 

Hc
1: ϒi < 0, i=1, 2, …n1; i= n1+1, n1+2,…, n such that lim n→∞ 

𝑛

𝑛1
=δ, 0< δ≤1. 

This formulation leads to  

Ho: ϒi = 0 & Hc
1: δ > 0 

In this case, reject would be evidence in favor of rejecting the unit root hypothesis for a non-zero 

fraction of panel’s n members as n→∞. 

To sum up, the heterogeneity of panel series introduces a new asymmetry into the formulation of 

the null v. alternative hypothesis of unit root tests, that is the specification of the null hypothesis is 

designed to be the same for all i series but the alternative hypothesis is allowed to change by i; the 

problem is often concealed by assuming cross-sectional homogeneity, but the neglect of parameter 

heterogeneity can lead to spurious results in dynamic panels, namely, with lagged dependent 

variables as explanatory variables. In short, there is no justification to pool country-specific panels 

if T is large (over 100 observations).   

 The panel data asymptotic theory suggests that the mean of n independent and unbiased 

estimates of a coefficient will also be unbiased, and, by the central limit theory, the sample mean 

will have a normal distribution around the true mean if those estimates are independent. Testing 

for unit roots with panel series must be based on critical values for standard error distributions 

across both i and T by forming the sample mean of the t-statistic as 

𝑡̅ = 1/𝑛 ∑ 𝑡𝑖
𝑛

𝑖=1
 

It is then possible to construct an asymptotically normal variance from  

𝑍𝑡̅ =
√𝑛 [𝑡̅ − 𝐸(𝑡̅ )]

√( 𝑡̅)
 

Im, Pesaran and Shin (2003) demonstrate that 𝑍�̅�     has an asymptotically standard normal 

distribution and obtain the theoretical mean and variance of 𝑡̅  to determine robust cross-sectional 
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ADF, or  CADF critical values corrected for the OLS bias.  As n and T increase in size, trob= ϒ�̂�/ 

√𝑉𝑎�̂� (�̂�𝑖) is asymptotically standard normally distributed and therefore, consistently estimating 

the OLS variance of  ϒ�̂�. The IPS critical value of the CADF tests depend on n and T , reported 

separately with and without the inclusion of a time-trend in the unit root equation. For example, 

suppose we have GDP series with n=7, T=50 and a time-trend included, then the 5% IPS critical 

value corrected for the OLS bias is -2.06 compared to an ADF value of -3.50. Neglecting the cross-

section changes in panel data can easily lead to misleading test results.  

Example: an eight-country panel series from 1980Q1-2013Q1 (no time-trend) suggested   ϒ�̂� =

−0.049 (−1.678) for Australia based on the inclusion of five lags of ∆yit and the average eight-

country t-statistic is -2.44, and each series has T=133 observations. Critical values at 5% and 1% 

n=7 and T>70 are -2.15 and -2.40; therefore, we reject the null that all  ϒ�̂� are zero. Nonetheless, 

the residuals between country-specific residuals may not be insignificant. The error correlation 

between Germany and France is 0.67. The practice is to obtain the mean value of each series by 

t�̅�𝑡 = 1/𝑛 ∑ 𝑦𝑖𝑡
𝑛
𝑖=1 , then subtract this common mean from each observation y*

it= (yit - �̅�𝑡 ), then 

apply the CADF to y*
it. With this correction,  ϒ�̂� = −0.043 (−1.434), and although T and lag 

numbers remains unchanged, the mean eight-country t-statistic is now -2.50, though the null of 

stationarity is still rejected. Note that with Hb
1 as the alternative hypothesis, some of the series 

would be non-stationary; subtracting a non-stationary �̅�𝑡 from a stationary series introduces 

distortion into this method and has generated critical values of 𝑡̅ by bootstrapping techniques. 

9.3 ARFIMA  

9.3.1 Introduction 

Chapter 8 examined how non-stationarity series can be made stationary by differencing the series 

d times to obtain stationarity; where d is the integer order of differencing that renders the series  

(1 - L)d yt stationary. We also noted that the Dicky-Fuller/Johansen unit-root weak power test, in 

distinguishing between a non-stationary I(1) series and slowly converging stationary I(0) series, 

result in false rejection of stationary too often. Since the standard unit-root tests have I(1) as the 

null hypothesis and I(0) as the alternative, it is also a good idea to check for false rejection of 

stationarity by the KPSS unit-root test that has I(0) as the null and I(1) as alternative. Then, a 

stationary series has d=0 differencing while the test result support non-stationarity, the solution is 
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to adopt d=1 differencing. However, that may not be enough when a series displays to much 

dependence on its own past values, with an autocorrelation function that converging very slowly, 

for example, inflation or interest rate time-series. Such time-series have covariance stationary 

processes fall between the exteremes of the series with unit-roots and those with short-memory 

that have absolutely summable autocovariance functions decaying geometrically, see discussion 

of AR (p) process in chapter 6. That is, the dependence of such series on own past values decays 

very slowly. Such series have long-memory and require differencing by a fractional order of 

integration rather than an integer order of d in order to capture the long-run parameters. The 

autocorrelation of a fractionally-differenced time series decay slow hyperbolically compared to 

short-memory exponential or geometric series as shown in the plot below. Such a time-series is 

said to have square-summable autocovariances ∑ 𝜑𝑗
2 < ∞∞

𝑗=0  , and longer memory compared to 

that with absolutely-summable autocovariance in the sense that its order of integration is factional 

as opposed to long-memory AR (p) process with based on non-fractional order of integration.  In 

general, it must be analyzed by the autoregressive moving average fractionally integrated 

(ARFIMA) model. The ARFIMA applications are common in hydrology and was first introduced 

to econometrics by Granger and Joyeux (1980) who argued that the autocorrelation of ARMA 

decay exponentially, while that of ARFIMS more slowly hyperbolically; hence the latter can more 

effectively obtain separate estimates of the long-run and short-run dynamics.  

Plot of exponential v. hyperbolic curves 

 

The pure time-series ARIMA as three sets of parameters. 

 

A(L) yt = (1 - L)d yt =∝ +𝐵(𝐿)𝜀𝑡       (9.3.1) 

where A(L)=1 - 𝜌1L - 𝜌1L2- . . . - 𝜌𝑝Lp; B(L)=1 - 𝜃1L - 𝜃1L2- . . . - 𝜃𝑞Lq, the first p set determines 

the autoregressive polynomial in the L operator while the second q set that of the moving average 

polynomial in the i.i.d, residual process; and the integer order of integration parameter d , typically 

with d=1, that defines an ARIMA (p, d, q) model. The estimation of an ARIMA requires that the 
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A(L) be invertible, so for differenced yt
*, after multiplying both sides of (9.3.1) by 𝐴(𝐿)−1, we 

have  

yt
*

 =𝐴(𝐿)−1(∝ +𝐵(𝐿)𝜀𝑡)      (9.3.2) 

That implies the characteristic roots of A(L) polynomial to lie strictly outside the unit circle, for 

example with AR (1), |𝜌| must be less than 1. If the conditions are met, then the time-series will be 

representable by a MA (∞) model (see chapter 7), and estimated by ML based on the Kalman filter, 

a nonlinear procedure that predicts results the current stage of a time-series based exclusively on 

the information available from the previous location, examined in chapter 16. Similarly, stability 

requires the 𝐵(𝐿) to be invertible with the characteristic roots strictly outside the unit circle, so 

remultiplying the series the inverse of the 𝐵(𝐿) polynomial leads to an AR (∞), and that in turn 

requires, for example, a MA (1) |𝜃|<1.  

As discussed in chapter 7, long-memory time-series cannot rely on an MA (q) model that dies at 

exactly q lags, and though an AR (p) model has an infinite memory containing all the past residual 

values the process follows a geometric lag, quickly decaying for near-zero values. Moreover, d=1 

differencing can result in removing the long-run dynamic effects from the time-series by over-

differencing it. Granger and Joyeux (1980) suggested applying fractional ARIMA, or ARFIMA (p, 

d, q) with mean 𝜇 by allowing d in (9.3.1) to take on fractional values -0.5 < d < 0.5, written as 

 

∅(L)(1 - L)d( yt - 𝜇 )=𝛩(𝐿)𝜀𝑡;  𝜀𝑡 𝑖. 𝑖. 𝑑.(0, 𝜎𝜖
2)     (9.3.3) 

where (1 - L)d is the fractional differencing operator based on the gamma function. If the inverse 

of (1 - L)d exists and d < 1, then an infinite series can be approximated by (d -1) order of integration, 

see Hammilton (1994), chapter 15; esp. the appendix. For stationarity and invertibility, all roots of 

∅(L) and 𝛩(𝐿) must be strictly outside the unit-circle and |d|<0.5; the process is non-stationary 

with an infinite variance if d ≥ 0.5; in that case, we should diference the process before applying 

(9.3.3), for example for d=0.7, the process becomes 

(1 - L)-0.3(1 – L) yt =𝛩(𝐿)𝜀𝑡 

The ARFIMA process displays long-memory if d∈ (0, 0.5) and intermediate memory or negative 

long-range dependence if d∈ (- 0.5, 0).  

There are two methods of the ARFIMA estimation, exact LM parametric one and by semi-

parametric spectral function, see chapter 16. Here, we briefly mention in passing the former 
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proposed by Sowell (1992) that must specify the p and q lag structures and then estimation the full 

ARFIMA conditional model by 

yt =(1 −  𝐿)−𝑑(∅(𝐿))
−1

𝛩(𝐿)𝜀𝑡      (9.3.4) 

This approach first obtains the short-run effects by setting d=0; the long-run effects are obtained 

from fractional differencing process (1 −  𝐿)−𝑑𝑦𝑡  using �̂� values, see exercise Q 14.4 for an 

application.  

 

Readings 

Enders (2015, chapters 5 and 6), Hamilton (1994, chapter 1) on autoregressive distributed lags; 

Im, Pesaran and Shine (2003) proposed the panel data unit-root test. Granger & Joyeux (J. T-S. 

A. 1:15-29) introduced the analysis of slow long-memory series with ARFIMA, text discussion 

includes Pesaran (2015, section 15.8), and Hamiltion (1994, section 15.5).  
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Chapter 9 ARDL, Panel Unit-Root, ECM, & ARFIMA Exercises 

Q9.1 Let the realized value of the {𝑧𝑡} sequence, and exogenous {𝑦𝑡} sequence, to be such that 

𝑧1=1 and all other values of 𝑧𝑖=0. 

a. Using ARDL equation 𝑦𝑡 = 𝛼1𝑦𝑡−1 + 𝑐0𝑧𝑡 + 𝜀𝑡, a one-unit shock in 𝑧𝑡 has the initial 

effect of increasing 𝑦𝑡 by 𝑐𝑜 units. Use this equation to trace out the {𝑧𝑡} sequence on the 

time path of 𝑦𝑡.  

b. Using ARDL equation ∆𝑦𝑡 = 𝛼1∆𝑦𝑡−1 + 𝑐0𝑧𝑡 + 𝜀𝑡, a one-unit shock in 𝑧𝑡 has the initial 

effect of increasing the change in 𝑦𝑡 by 𝑐𝑜 units. Use this equation to trace out the {𝑧𝑡} 

sequence on the time path of 𝑦𝑡.  

Q9.2 Download natural_gas_prices.dta containing EU and US gas price time-series with 195 

0bservations. 

a. plot eur/us prices in levels and first differences for informal evidence of co-movement between 

the series, and then fit an ARDL model of eur on us; select the optimal lag number by AIC and 

comment on the outcome 

Q9.3 Download pennxrate.dta containing real exchange rate data for a panel of large number of 

countries observed over 34 years. 

a. Apply the Im, Pesaran & Smith (IPS) panel unit-root method to test if all lnrxrate series contains 

unit roots for the subset of OECD countries, explain the table outcome and comment on the test 

results. 

b. Test for unit roots in a. by allowing for serially correlated errors (for this question you need to 

use xtunitroot regression command, thus, you must first inform Stata that the dataset has a panel 

structure). 

 Q9.4_Download campito.dta, botanical data on the historical growth of tree trunks. 

a. plot the series and its autocorrelation, estimate ARMA(2, 1) and ARFIMA, ARFIMA with AR(1), 

and comment on the outcome.    
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Chapter 10   Volatility Analysis, ARCH & GARCH Processes 

Introduction 

A non-stationary series exhibits a mean that is not stable over time. However, there are also other 

important unstable series that have constant means but with conditional variances that change over 

time. Models with non-constant variance are particularly well suited to analyzing the dynamics of 

financial time series that often display volatility, in addition to clustering, that is, radical changes 

in the series tightly compressed into very short time intervals.    

Figure 10.1 shows four series of monthly returns to stock market prices that have long-run 

constant means around zero but deviate radically from their means in some periods, the series are 

volatile.  Moreover, volatility is clustered, that is, periods of large deviations from the mean 

followed by other large deviations are closely packed together. These series have unstable 

variances, namely. they are heteroskedastic.  

Figure 10.1-Time series of returns to stock indices 

 

 

Moreover, the histogram of the returns is not normally distributed, as it is evident from Figure 10.2 

which imposes normal distribution on the top. Note how the unconditional distributions cluster 

around the mean and have fat tails relative to the normal distribution- the series have leptokurtic 

unconditional distributions.  To analyze such distributions, we must define volatility as a function 
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of the error et, or “news”, or “shocks” in the financial markets, and accounting for et-1 lag and 

clustering effects. The model employed for this type of analysis, introduced by Engle (1982), is 

called Autoregressive Conditional Heteroscedasticity or ARCH, a particularly useful model for 

analyzing financial markets. 

Figure 10.2-Histograms of returns to stock indices 

 

10.1 ARCH   

It is helpful for understanding ARCH process to contrast its mean and variance with those of the 

AR(1) process. 

yt=ϕ+ut; 

ut=ρut-1 +𝜀t; | ρ|< 1 & 𝜀t ∼ WN(0, σ2) 

The unconditional mean of this model is constant (zero) and its conditional mean varies over time, 

while the conditional and unconditional variances are constant, that is, independent of time. 

 Let us now allow the conditional variance to change over time while the conditional mean 

remains constant. We start with the simplest model with one period time lag ARCH(1), and then 

generalize to ARCH models with several lags, later. 

          yt = θ + ut 

     ut |It-1~ N(0, ht )    (10.1.1) 

   ht = α0 + α1u 
2
t-1  ; α 0>0 and  0≤α 1 ≤1 
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Note that yt in (10.1.1) is run on just a constant called the mean equation. The second equation 

states that the error term’s conditional normality, that is, that it is normally distributed conditional 

on information available at time t-1, with mean 0, and time-dependent variance ht. The third 

equation makes the change in ht a function of a constant term plus the lagged error squared at time 

t-1. In addition, we impose the condition that α 1 must be less than 1 in order to prevent ht series to 

explode. The conditional normality means that time t-3, for instance, u3| I2~ N(0,  α0 + α1u 2
2). 

ARCH(1) is the simplest example where ht depends on one period lag u 2t-1. The difference between 

ARCH (1) and AR(1) highlights the contrast between a mean non-stationary series and a variance 

non-stationary series; AR(1) has a time-varying conditional mean but constant conditional 

variance, while ARCH(1) has a time-varying conditional variance but constant conditional mean 

(unconditional mean and variance are time-independent in both AR and ARCH), see below. 

i.         ARCH (1) moments 

(10.1.1) states that conditional on u2
t-1, the mean of ARCH(1) for ut is constant(zero), but its 

variance is not, ht depends on time. Compare these with the unconditional first two moments of 

ARCH (1). The unconditional distribution of ut is obtained by the standardized errors  

(ut/√ℎ𝑡   | It-1) = 𝑣𝑡~N(0,1); 

since 𝑣𝑡 has a standard normal distribution independent of ut-1. Therefore, the unconditional 

distribution of (ut/√ℎ𝑡  ) = 𝑣𝑡~N(0,1), implies that 𝑣𝑡 and u 2
t-1 are independent, and we can thus 

write the unconditional mean of ut  as 

E(ut) = E(𝑣𝑡) * E(√𝛼0 + 𝛼1𝑢𝑡−1
2   ) = 0  

because by assumption E(𝜀t)=0. The unconditional variance is 

Var(u2
t)=E(u 2t) = E(v2

t)* E(√𝛼0 + 𝛼1𝑢𝑡−1
2    )2 

Since by assumption, E(v2
t)=1 and E(u 2t)=E(ut - �̅� )2 and �̅� =0, we can rewrite  

Var(u 2)=E(u 2t) = 𝛼0 + 𝛼1𝐸𝑢𝑡−1
2 = 𝛼0 + 𝛼1𝐸(𝑢𝑡

2), 

since by assumption the errors are normally distributed over time, they are independent in different 

time periods, and hence E(u2
t) = E(u2

t-1), and finally we have  

E(u2
t)(1 - 𝛼1) = 𝛼0  or 



 154 

σ2
t = Var(v2

t)=
1

0

1 



−
 

namely. Constant unconditional variance (independent of time). 

 The ARCH models provide an effective method of analyzing financial risk, and financial 

markets usually employing volatility of variance as a measure of risk. The ability of ARCH models 

to employ post information on volatility to improve on forecasting of future risk therefore plays a 

critical rule in financial risk analysis. The models of ARCH and its generalized versions are 

common in risk management models of asset pricing, portfolio selection and options pricing; 

though they also prove effective in instability analysis of inflation or growth; see applied examples.  

Figure 10.3 presents a hypothetical example of two time series with constant and variable 

variances.   

Figure 10.3-Constant & Time-varying Variances  
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ii. General p-order ARCH 

We can generalize ARCH to higher orders. Suppose an observable time-series for 𝑦𝑡 takes a p-

order AR(p) of the form 

𝑦𝑡 = 𝑐 + 𝜙𝑡𝑦𝑡−1 +𝜙2𝑦𝑡−2 +. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝑢𝑡 

with a white noise 𝑢𝑡 as 

      E(𝑢𝑡)=0 

 E(𝑢𝑡𝑢𝜏)={0                    otherwise
𝜎2                 for 𝑡=𝜏  

Covariance stationary characteristic of a time-series requires that the characteristic roots of the 

series 

1 − 𝜙1𝑧 − 𝜙2𝑧
2 −. . . − 𝜙𝑝𝑧𝑝 = 0   (10.1.2) 

be outside the unit circle.  

We obtain the conditional mean of this model from the linear forecast of the level of 𝑦 𝑡 as 

𝐸(𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, . . . ) = 𝑐 + 𝜙𝑡𝑦𝑡−1 +𝜙2𝑦𝑡−2 +. . . +𝜙𝑝𝑦𝑡−𝑝 

While the unconditional mean of 𝑦𝑡is 

𝐸(𝑦𝑡) = 𝑐/(1 − 𝜙𝑡 − 𝜙2−. . . −𝜙𝑝) 

Thus, the conditional mean of 𝑦𝑡changes over time while its unconditional mean is constant. So 

far, we have assumed constant variance 𝜎2, but the conditional variance of 𝑢𝑡 can change over 

time, for example, when forecasting a volatile time-series such as inflation. Based on the above 

additive error term model, we can employ an AR(m)process to describe this.  

𝑐 + 𝜙𝑡𝑦𝑡−1 +𝜙2𝑦𝑡−2 +. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝑢𝑡 by 

𝑢𝑡
2 = 𝜁 + 𝜙𝑡𝑢𝑡−1

2  +𝜙2𝑢𝑡−2
2 +. . . +𝜙𝑚𝑢𝑡−𝑚

2 + 𝑤𝑡      (10.1.3) 

With a white noise 𝑤𝑡process 

   E(𝑤𝑡)=0 
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 E(𝑤𝑡w)={0                    otherwise
𝜆2                 for 𝑡=𝜏  

The conditional variance based on the previous m periods is given by 

𝐸(𝑢𝑡
2|𝑢𝑡−1

2 , 𝑢𝑡−2
2 , . . . ) = 𝜁 + 𝜙𝑡𝑢𝑡−1

2  +𝜙2𝑢𝑡−2
2 +. . . +𝜙𝑚𝑢𝑡−𝑚

2  

And the covariance stationarity requires 

1 − 𝛼1𝑧 − 𝛼2𝑧
2 −. . . − 𝛼𝑚𝑧𝑚 = 0 

or, given 𝛼𝑗 > 0, 𝛼1 + 𝛼2 +. . . + 𝛼𝑚 < 1. 

Given the above, we obtain the unconditional variance from 

𝜎2 = 𝐸(𝑢𝑡
2) =  𝜁/((1 − 𝛼1 − 𝛼2−. . . −𝛼𝑝) 

Finally, we obtain the s-period forecast of �̂�𝑡−𝑠|𝑡
2 from  

(�̂�𝑡−𝑗|𝑡
2 − 𝜎2)= 

𝛼1(�̂�𝑡−𝑗−1|𝑡
2 − 𝜎2) + 𝛼2(�̂�𝑡−𝑗−2|𝑡

2 − 𝜎2)+. . . +𝛼𝑚(�̂�𝑡−𝑗−𝑚|𝑡
2 − 𝜎2) 

for j=1, 2, . . . , s. The white noise error process 𝑢𝑡of m-order is denoted as 𝑢𝑡~ ARCH (m). 

However, the above linear model would be more tractable if specifying a multiplicative 

disturbance. Suppose this alternative representation has a serially dependent error term given by 

𝑢𝑡 = √ℎ𝑡 . 𝑣𝑡 , 𝐸(𝑣𝑡) = 0 & 𝐸(𝑣𝑡
2) = 1   (10.1.4) 

Moreover, assume  

ℎ𝑡 = 𝜁 + 𝛼𝑡𝑢𝑡−1
2  +𝛼2𝑢𝑡−2

2 +. . . +𝛼𝑚𝑢𝑡−𝑚
2    (10.1.5) 

This implies 

𝐸(𝑢𝑡
2|𝑢𝑡−1, 𝑢𝑡−2, . . . ) = 𝜁 + 𝜙𝑡𝑢𝑡−1

2  +𝜙2𝑢𝑡−2
2 +. . . +𝜙𝑚𝑢𝑡−𝑚

2     

Therefore, the linear forecast of this multiplicative ARCH (m) is also the conditional expectation. 

Furthermore, the conditional variance of ARCH (m)can be obtained by the substituting of the 

squared equation (10.1.4) into equation (10.1.3), using (10.1.5) for ℎ𝑡 
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𝑢𝑡
2 = ℎ𝑡 . 𝑣𝑡

2 = ℎ𝑡 + 𝑤𝑡 

or 

 𝑤𝑡 = ℎ𝑡 . (𝑣𝑡
2 − 1)       (10.1.6) 

Thus, the conditional variance of ARCH (m) changes with t, even though the unconditional 

variance of (10.1.3), 𝜆2, is constant. 

However, (10.1.6) reflects the fourth moment of 𝑢𝑡, or the second moment of 𝑤𝑡; that moment 

does not exist for all stationary ARCH models. For example, a real solution does not exist λ for an 

ARCH (1) unless 𝛼𝑡
2 < 

1

3
 , see Hamilton (1994, p. 660). However, the above linear model would be 

more tractable by specifying a multiplicative disturbance. 

We examine econometric applications of volatility models with ARCH (1); generalization to more 

complex volatility models is straight forward. 

iii. Testing 

A Lagrange Multiplier (LM) is the usual test employed to detect ARCH offsets. The test procedure 

is as follows: 

First estimate the mean equation, that is, a regression of yt on a constant, though variables may also 

be included, in order to obtain et. Then, for example, to test for ARCH (1) effects, regress equation 

�̂�t
2 =γ0+γ1�̂�2

t-1
 + μt 

where  μt is a random error, and test for  

H0: γ1=0 vs. Ha: γ1 ≠ 0. 

Given ARCH effects (γ1 ≠ 0), R2
𝜇 will be relatively high due to dependence of �̂�t

2 on �̂�2
t-1. LM 

test statistics is (T-q)R2
u where T is the sample size and q is the order of terms in the equations. 

With ARCH (1), we reject H0 if (T-q)R2
u
 > χ2

q at a given confidence level.  

Example: estimated mean equation for returns on shares of a light bulb producing company is  

rt = β0 + et 
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This is the mean equation with just an intercept and where rt is the monthly return.  Obtain 

estimated residual and run an autoregressive equation of residuals squared: 

êt
2 = 0.908 + 0.353 ê2

t-1 

t-ratio  (8.41) 

and Re
2 = 0.124, T = 500.So (T-1)R2 = 499 * 0.124 = 61.876 > χ2

1   at α 0.5 % =3.841, so we reject 

the null; there are ARCH effects in the residual of ARCH(1). 

10.2 Estimation 

The standard applications of the maximum likelihood estimator for a normally distributed 

residual with zero mean and constant variance lead to the first-order conditions that are easy to 

solve since they are linear. That is not the case with the ARCH and GARCH/MLE applications with 

non-linear first-order equations. As an example, consider a simple ARCH(1) process with a 

normally distributed 𝑢𝑡=𝑦𝑡−𝛽𝑥𝑡, with a zero mean and a constant variance𝜎2and define 𝑢𝑡 =

𝑣𝑡√ℎ𝑡. Given each realization of 𝑢𝑡, and ℎ𝑡as the conditional variance, the joint likelihood of 

𝑢𝑡realization t=1, 2, …,T is   

L=∏ (
1

√2𝜋ℎ𝑡
) exp (

−𝑢𝑡
2

2ℎ𝑡
)𝑇

𝑡=1                  

Therefore, the log-likelihood function becomes 

𝑙𝑛𝐿 = −
𝑇

2
ln(2𝜋) − 0.5∑ 𝑙𝑛ℎ𝑡

𝑇

𝑡=1
− 0.5∑ (

𝑢𝑡
2

2ℎ𝑡
)

𝑇

𝑡=1
 

Now substitute for the conditional variance of ARCH(1) process ℎ𝑡 = 𝛼0 + 𝛼1𝑢𝑡−1
2  , given 

𝑢𝑡=𝑦𝑡−𝛽𝑥𝑡 leading to  

𝑙𝑛𝐿 = −
𝑇 − 1

2
ln(2𝜋) − 0.5∑ ln (𝛼0 + 𝛼1𝑢𝑡−1

2 )
𝑇

𝑡=2
−

1

2
∑ [

(𝑦𝑡−𝛽𝑥𝑡)
2

(𝛼0 + 𝛼1𝑢𝑡−1
2 )

]
𝑇

𝑡=2
 

Notice that we lose the initial observation for 𝑢0 at t=1 period. There are no analytical solutions to 

the first-order conditions for maximization of this equation and numerical optimization cannot 

guarantee optimal solutions if the partial derivatives are close to zero.  

So far, we assumed normally distributed errors whereas the unconditional distribution of 

many time-series, particularly financial assets, have flatter tails than those from the Gaussian 
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family, namely, higher probability of a very large loss (or gain). Then the normally distributed 

maximum likelihood is not an appropriate estimator. However, we can use the same basic approach 

with non-Gaussian errors drawn from a t-distribution for fat-tailed distribution as shown in Figure 

10.5 

Figure 10.4-Normal and t-distributions:3 degrees of freedom 

 

More specifically, the ML application provides an estimate of the degree of freedom v as a 

parameter of t-distribution conditional on the scale parameter of that distribution 𝑀𝑡 from its 

density given by 

𝑓(𝑢𝑡|𝑀𝑡) =
Г[

𝑣 + 1
2

]

√𝜋𝑣 Г(
𝑣
2
)
𝑀𝑡

−1/2
[1 +

𝑢𝑡
2

𝑀𝑡𝑣
]−(𝑣+1)/2 

where Г(.) is the gamma function, see Hamilton (1994, p. 662) for details.  

However, even if the assumption of a Gaussian error distribution is invalid, we can still 

employ the ARCH process to obtain consistent parameter estimates; such an estimator,  called a 

Quasi-Maximum Likelihood estimator (Q-MLE), can provide consistent linear forecasts of the 

squared value of the error observations even if the distribution of 𝑢𝑡is non-Gaussian as long as 𝑣𝑡 

satisfies 𝐸(𝑣𝑡) = 0 & 𝐸(𝑣𝑡
2) = 1 conditions stated for equation (10.1.3) above, though the 

standard errors would have to be adjusted, see Hamilton (1994, p. 663).   

 i.   Example (a): we estimate the ARCH model by maximum likelihood estimator using 

numerical methods, so the starting values must be chosen carefully to obtain global and not just 

local optimized estimates. For the mean equation (10.1.3), the result is  

�̂�t=�̂�0=1.063         (10.2.1) 
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Var(�̂�t
 )=ℎ̂t=α̂0 +  α̂1ê2

t-1
  ; =0.642+0.569 ê2

t-1
         

t-ratio    (5.54) 

The t-ratio suggests significant ARCH effects. Note that both α0>0 & α1>0, the conditions required 

for positive variances of the ARCH model and its convergence.  

ii. Forecasting 

Investment decisions on shares are taken on the basis of their risk, not just their returns, and 

volatility offers a measure of risk. To follow from the example of the lighting company, from (2) 

we obtain 

Example (b): 

�̂�t=�̂�0=1.063       (10.2.2) 

Since (10.2.2) does not change with time, it is both the conditional and unconditional mean return. 

We also obtain an estimate for �̂�t=rt - �̂�t in order to estimate 1-step-ahead forecast ℎ̂t+1=α̂0 +  

 α̂1 (rt - �̂�0)
2 after substitution �̂�0 for �̂�t.+1 (since �̂�0 is independent of t (�̂�t in (10.2.1) only changes 

with �̂�t, so �̂�t.= �̂�t.+1=(�̂�0). Given �̂�t=( rt – 1.063)2, we finally have 

ℎ̂t+1=α̂0 +  α̂1 (rt - �̂�0)
2=0.624+5.69( rt – 1.063)2  (10.2.3) 

Note that ℎ̂t+1 does change by time because of its dependence on rt at time t. The conditional 

variance for this time series and the histogram of its returns are shown below (Figure 10.5) - a 

large change is observable around 370. Note the difference between the graphs of the series rt 

which may be above or below the mean and its variance ht, a squared and, therefore, a positive 

series; however, volatility and clustering are evident in both.  

10.3 GARCH 

Estimating of ARCH (p) requires p+1 parameter estimates. The loss in degrees of freedom when p 

is large results in inaccurate estimates. The generalized ARCH, GARCH, model is designed to 

capture long dynamic effects with fewer parameters. GARCH(1,1) is the simplest version of the 

general GARCH(p,q) where p is the number of lags of e terms and q is the number of lags of h 

terms. Specifically, we can generalize ARCH (M) process (10.2.1)-(10.2.3) to allow the conditional 

variance to depend on infinite lags of 𝑢𝑡−1
2 .  
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Figure 10.5-Time series and histogram of Lighting share prices 

 

Plot of conditional Variance 

 

ℎ𝑡 = 𝜁 +  𝜋(𝐿)𝑢𝑡
2        (10.3.1) 

where 𝜋(𝐿) = ∑ 𝜋𝑗𝐿
𝑖∞

𝑗=1 . 

It is natural to parametrize  𝜋(𝐿)as the ratio of two finit order polynomials by 

𝜋(𝐿) =
𝛼(𝐿)

1 − 𝛿(𝐿)
=

𝛼1𝐿
1 + 𝛼2𝐿

2+ . . . +𝛼𝑚𝐿𝑚

1 − 𝛿1𝐿
1 + 𝛿2𝐿

2+ . . . +𝛿𝑟𝐿
𝑟
 

Assuming the roots of 1 − 𝛿(𝑧)=0 from equation (1) are  

[1 − 𝛿(𝐿)]ℎ𝑡 = [1 − 𝛿(𝐿)]𝜁 + [1 − 𝛿(𝐿)]𝜋(𝐿)𝑢𝑡
2 

or  

ℎ𝑡 = 𝑘 + 𝛿1ℎ𝑡−1 +𝛿2ℎ𝑡−1 +. . . +𝛿𝑟ℎ𝑡−𝑟 

+𝛼𝑡𝑢𝑡−1
2 + 𝛼2𝑢𝑡−2

2 +. . . +𝛼𝑚𝑢𝑡−𝑚
2    (10.3.1) 

where now k≡ [1 − 𝛿1 + 𝛿2+ . . . +𝛿𝑟]𝜁 . (10.3.1) is the generalized autoregressive conditional 

heteroscedasticity model, and denoted 𝑢𝑡~ GARCH (r, m). To ensure non-negative ℎ𝑡 ,  (7) must 
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have k>0, 𝛼𝑗 ≥0, and 𝛿𝑗 ≥0. Then 𝑢𝑡
2is covariance-stationary if  𝑤𝑡has finite variance and the roots 

of 

1 − 𝛿1𝛼1𝑧 − 𝛿2𝛼2𝑧
2− . . . − 𝛿𝑝𝛼𝑝𝑧

𝑝 = 0  

or if 

𝛿1𝛼1𝑧 + 𝛿2𝛼2𝑧
2+ . . . + 𝛿𝑝𝛼𝑝𝑧𝑝 <1.  

If this condition for covariance stationary characteristics holds, then the unconditional mean of 

𝑢𝑡
2 is  

𝐸(𝑢𝑡
2) = 𝛿2 = 𝑘/[𝛿1𝛼1𝑧 + 𝛿2𝛼2𝑧

2+ . . . + 𝛿𝑝𝛼𝑝𝑧
𝑝] 

We can now understand the reason for the popularity of GARCH over ARCH models. GARCH(1,1) 

requires estimation of three parameters(δ , α, β), whereas if p is large, for instance p>6, ARCH(p) 

requires at least seven parameter estimates. In line with the principle of parsimony, we work with 

GARCH, especially GARCH (1,1), in econometric analysis of volatility and its forecasting. This 

outcome is not surprising in the light of the discussion in chapter 6. Note the similarity in moving 

from ARCH to GRACH to that of moving from distributed lags model to a dynamic one by 

substituting lags of dependent variable for lags of the independent variable, and with similar 

results, namely, both GARCH and dynamic models conserve degrees of freedom to offer more 

parsimonious models with improved forecasting ability.   

Example (c): continuing with the same lighting bulb data: 

�̂�t=1.049 

Var(�̂�t
 )=ℎ̂t=α̂0 +  α̂1ê2

t-1
 + α̂2ℎ̂t-1 ; =0.401+0.492 ê2

t-1
 +0.228ℎ̂t-1. 

t-ratio              (4.83)          (2.14) 

Significant ℎ̂t-1 points to improved modeling with ℎ̂t-1 included.  

The graphs mean and variance of this example are shown in Figure 10.6.  
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Figure 10.6-Estimated means and variances of ARCH models

 

i. TGRACH & EGARCH for Asymmetric response 

Note that GARCH(1,1) variance is only affected by the squared value of the last period’s return, 

therefore, the positive/negative signs for return has no effect on volatility, thus, the GARCH model 

treats bad and good news or shocks symmetrically. However, negative news hits financial markets 

more severely than positive news, inducing greater volatility. The threshold GARCH, or 

TGARCH model provides such asymmetric responses to conditional variance in order to allow 

greater volatility impact on returns of bad relative to good news. TGRACH (1, 1) conditional 

variance function is  

ht=2
t= ω+ αe2

t-1 + Dt-1e
2

t-1+ βht-1    (10.3.3) 

where 








)(0

)(01

newsgoodOeif

newsbadeif
D

t

t

t  

When the lagged  return is positive, Dt=0, the effect on the current conditional variance remains 

as before, that is α. However, if the lagged return is negative (bad in previous period), Dt=1 and 

the effect equal (α+ )> α . With =0 restriction imposed,  we have a symmetric response; the 

asymmetric response factor is called the leverage effect because a negative shock to stock prices 

raises the aggregate debt/equity ratio, thereby  increasing leverage.  Thus, with the TGARCH 
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process, volatility is driven by both size and sign of shocks. Figure 10.7 shows segment ac is 

steeper than ab, thereby a positive 𝑢𝑡shock will have a smaller effect on volatility than a negative 

shock of equal size.  

Figure 10.7-The Leverage Effect 

 

Example (d):        rt=0.994 

ℎ̂t= 0.356+0.263e2
t-1 +0.492Dt-1e

2
t-1 +0.287ht-1 

t-ratio      (3.267)        (2.405)             (2.488) 

In this example, negative et (bad news) increases volatility by (0.263+0.492)>0.263 compared with 

good news when et >0. The graph above illustrates the outcome; note the heightened volatility 

around 200. 

One problem with GRACH and TGARCH models is the restriction that all of the estimated 

coefficients are positive. A more flexible model that is not subject to that restriction expresses 

volatility as a log-linear function. Consider for example a GRACH (1, 1) process.  

𝑙𝑛ℎ𝑡 = 𝛼0+ 𝛼1(𝜀𝑡−1/ℎ𝑡−1
1/2

) +𝛾1|𝜀𝑡−1/ℎ𝑡−1
1/2

+ 𝛽1lnht-1   (10.3.4) 

 (10.3.4) is known as exponential GRACH or EGARCH. EGRACH have some advantages 

over TGARCH. First, since (10.3.1) has a log-linear functional form, it does not require non-

negative coefficient estimates because 𝑙𝑛ℎ𝑡 cannot be negative; relaxing that restriction results in 

a more flexible functional form. Second, the EGARCH model uses a standardized value of shocks 

𝜀𝑡−1, divided ℎ𝑡−1
1/2

 , giving it a natural interpretation expressed in unit-free measurement. 

ii. GARCH-M          

Financial markets show a positive relationship between risk and return; high risk stocks offer high 

returns. To allow for the risk vs. return trade-off, we define the mean equation h2
t to be a function 

of volatility directly. This is the GRACH-in-mean, or GARCH-M model. 
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yt=0+ ht + et ;  et |It-1 (0, ht) 

ht= +e2
t-1 +ht-1;  > 0, 011 & 011 

The last equation shows the effect of conditional variance on the dependent variable measure of 

volatility. Note that even though the mean of the error term in GRACH_M is zero, therefore 

constant, the mean of ht is unlikely to be constant once it is defined as a function of ht-1.          . 

Example (e): 

�̂�t=0.818+0.196ht 

t-ratio  (2.915) 

ℎ̂t= 0.370+0.295e2
t-1 +0.321Dt-1e

2
t-1 +0.2787ht-1 

(3.426)        (1.979)             (2.678) 

The estimations show increased volatility due to higher risk increases return by a factor of 0.196. 

The  graphs of figure 7 above show that expected mean is no longer constant. (compare means in 

the graphs for GARCH & TGRACH.)  

Finally, we note that the standard GARCH volatility equation can be extended to include 

exogenous variables such as the volume of financial markets: 

ht=2
t= ω+ αe2

t-1 + βht-1+xt  

where x is a positive exogenous variable. 

iii       Multivariate GARCH 

We may be interested in GARCH dynamics of several time-series simultaneously. Multivariate 

GRACH allows mapping how volatility shock to one variable could affect the volatility of related 

variables. Consider a simple two-variable, 𝑦1𝑡 & 𝑦2𝑡, with only two processes  

𝑢1𝑡 = √ℎ11𝑡 . 𝑣1𝑡 

𝑢 = √ℎ22𝑡 . 𝑣2𝑡 

with 𝑣𝑎𝑟(𝑣1𝑡)=1 & 𝑣𝑎𝑟(𝑣2𝑡)=1, so ℎ11𝑡&  ℎ22𝑡 represent the conditional variances of 𝑢1𝑡 & 

𝑢2𝑡, and ℎ12𝑡the conditional covariance, that is ℎ12𝑡 = 𝐸𝑡−1𝑢12𝑡𝑢12𝑡.  Then we can construct a 

simple multivariate GARCH (1, 1) process to allow volatility spill-overs. 
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h11t = α10  + α11𝑢 2
1t-1 + α12𝑢1𝑡−1𝑢2𝑡−1+ α13𝑢 2

2t-1 

 + 𝛽11ℎ1t-1 + 𝛽12ℎ12𝑡−1𝜀2𝑡−1+ 𝛽13h22t-1      (10.3.5) 

h12t = α20 + α21𝑢 2
1t-1 + α22𝑢1𝑡−1𝑢2𝑡−1+ α23𝑢 2

2t-1 

  + 𝛽21ℎ1t-1 + 𝛽22ℎ12𝑡−1𝜀2𝑡−1+ 𝛽23h22t-1      (10.3.6) 

H22t = α30 + α31𝑢 2
1t-1 + α32𝑢1𝑡−1𝑢2𝑡−1+ α33𝑢 2

2t-1 

  + 𝛽31ℎ1t-1 + 𝛽32ℎ12𝑡−1𝜀2𝑡−1+ 𝛽33h22t-1      (10.3.7) 

That is, the conditional variances, h11t & h22t, of each variable depends on its own and other lags; 

the conditional covariance between them, h12t, on the lagged squared error and their product. It 

would clearly be hard to implement this model of volatility spill-over involving many parameters 

estimates; even in this simple case, there are 21 parameters and the numbers grow rapidly as the 

order of GRACH process increases, with mean estimation and explanatory variables added. 

Moreover, solution for maximization of (10.3.5)-(10.3.7) cannot be obtained analytically and must 

rely on numerical iterative methods. There will then be convergence problems. If the model is 

overparametrized, and a coefficient estimate has a large confidence interval, so slight changes to 

the estimate will have little impact on maximization; it will be difficult to pin down its value, 

resulting in non-convergence. In order to avoid these problems, multivariate GARCH models 

employ suitable restrictions on (10.3.5)-(10.3.7) parameters. Such restrictions typically remove 

much of the interactive terms which of interest to volatility spill-over analysis, see Enders 

(2013,pp. 167-9).   

iv. Volatility Impulse-Response Function 

The following approach can plot the dynamics of volatility shocks for the (10.3.5)-(10.3.7) 

system despite the above difficulties. 

For example, from h11t, the one-step ahead forecast h11t+1 is 

Eth11t+1 = α10 + α11𝑢 2
1t +α12𝑢1𝑡𝑢+α13𝑢 2

2t+𝛽11ℎ1t+𝛽12ℎ12𝑡𝜀2𝑡+𝛽13h22t 

Updating this equation by two periods and obtaining its conditional expectation, we have 

Eth11t+2=α10+α11𝑢2
1t+1+α12𝑢1𝑡+1𝑢2𝑡+1+α13𝑢2

2t+1+𝛽11ℎ1t+1+𝛽12ℎ12𝑡+1+𝛽13h22t+1 
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Since Et𝜀 2
it+2= Ethiit+2,, and 𝐸𝑡𝑢𝑖𝑡+2𝑢𝑗𝑡+2= Ethijt+2, the above simplifies to 

Eth11t+2= α10+(α11 +𝛽11)𝐸𝑡ℎ11𝑡+1+(α12 +𝛽12)𝐸𝑡ℎ12𝑡+1++(α13 +𝛽13)𝐸𝑡ℎ22𝑡+1 

The differences between the volatility forecasts for any two sets of the initial values provide the 

impulse-response function in this approach. The procedure requires disturbing the conditional 

volatility forecast ETh11T+i, for t=1, 2, . . . , T, and i=1, 2, … by one or more of the 𝜀𝑖𝑇 in order to 

obtain its forecast ET*h11t+i. Then, the difference between the two sets of forecasts, that is [ET*h11t+I 

- ETh11t+j], constitutes the I-R function in this approach; if an external shock affects both 𝑢 & 𝑢2𝑡, 

we can plot its volatility effects. 

Example: Several exchange rates shocks from the financial crisis occurred in the late October-

early November 2008. We select a set of external shocks equal to the actual residuals on October 

29, 2008 to both error terms and obtain the corresponding volatility forecasts using the values of  

𝑢1𝑇∗ & 𝑢2𝑇∗as the initial shocks. A comparison of these values with the forecast volatilities 

obtained from actual values of 𝑢1𝑇 & 𝑢𝑇  appear in Figure10.8 (a-c), showing volatility increases 

of the euro and the British pound (panels a & c); though the latter displays sharper volatility that 

persisted to mid-2009. Therefore, the forecast covariance between the two (panel b) is higher than 

otherwise.  

Figure 10.8-Volatility Impulse-Response Plots 

 

Readings 

For textbook discussion, see Hamilton (1994, chapter 21), Enders (2015, chapter 3). Engle 

(1982) developed the ARCH volatility model.   
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Chapter 10 Volatility Analysis, ARCH & GARCH Exercises 

Q10.1 Download the data set byd.dta that contains a single time-series on the returns from 

purchase of shares in a lighting bulb company. Replicate the steps and the results reported in the 

text by following the Examples (a) through (e). 

Q10.2_Suppose that the {𝜇𝑡} sequence is the ARCH (q) process 

𝜇𝑡=𝑣𝑡(𝛼𝑜 + 𝛼1𝜇𝑡−1
2 +. . . +𝛼𝑞𝜇𝑡−𝑞

2 )1/2 

Show that the conditional expectation of 𝐸𝑡−1𝜇𝑡
2has the same form as the conditional expectation 

of (2).  

Q10.3_Consider the ARCH-M model represented by  

yt=0+ ht + et ;  et |It-1 (0, ht) 

ht= +e2
t-1 +ht-1 ;  > 0, 011 & 011 

where et is a white noise error; assume for simplicity that E𝑒𝑡
2 = 𝐸𝑒𝑡−1

2 =. . . =1.  

Find the unconditional mean of 𝐸𝑦𝑖. How does the change in δ affect the mean? Show that 

changing β & δ from (-4, 4) to (-1, 1) preserves the mean of {𝑦𝑡} sequence 

Q10.3 Download WPI_US.dta for the US quarterly wholesale price index.   

a. Fit a constant only model by OLS and test for ARCH effects using the LM test. 

b. Fit a GARCH (1, 1) for the conditional variance; the ARMA mean modeled as AR(1) & MA 

(1 4) to control seasonality. 

c. Fit the EGRACH model to obtain evidence for differences in unanticipated price increases 

news and price decreases news. 
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Chapter 11 Non-parametric and semi-parametric econometrics 

Introduction 

We rely on the density function for easily visualized measures of central tendency (mean, 

dispersion, etc.) of a distribution of a variable such as income, or consumption. Histograms provide 

a starting point for measures of central tendency by grouping the observations into “bins”, but they 

can be misleading as the result depend arbitrarily on the width and the number of bins chosen.  If 

you expand or reduce the choice of the bin boundary, the histogram’s shape will change, and if the 

data is continuous, namely, for total expenditure, then the graph will display a discrete distribution 

where none exists. Non-parametric methods of density estimation provide an alternative that 

avoids these problems.  

11.1 Nonparametric Density Estimation  

The simplest is to have the observations on, say, income on the x-axis and define a sliding “band” 

for each point from the fraction of sample observations that is “near” to x, and plot the outcome as 

the density at the mid-point of the band. This would define the so-called naïve density estimator, 

given h as its band width, and 2h its window width. At each x in the sample, the estimator gives a 

weight of 1 to each point within h/2 on either sides of x and zero otherwise, thereby estimating a 

total score as the fraction of the sample size divided by h:  

𝑓(𝑥) =  
1

𝑛ℎ
 ∑ 1 (− 

ℎ

2
 ≤ 𝑥 − 𝑥𝑖  ≤  

ℎ

2

𝑛
𝑖=1  ).      (11.1.1) 

With only a few points, we need to widen the band to bring in data from the difference part of the 

distribution, risking bias estimates by including dissimilar observations. However, as the sample 

size increases, the bandwidth shrinks toward zero; the bandwidth becomes smaller at a slower rate 

than the rate of increase in the sample size in order to ensure consistent estimates.  (11.1.1) is the 

so called naïve nonparametric density estimator; it is a simple example of the kernel method of 

nonparametric density estimation, with a rectangular kernel that give all the points within the band 

equal weight of 1, instead of more weight to observations closer to x and less to those that are 

father away. The latter problem can be dealt with by defining a kernel indicator function K to 

rewrite the naïve estimator as  

𝑓(𝑥) =  
1

𝑛ℎ
 ∑ 𝐾 ( 

𝑥−𝑥𝑖

ℎ

𝑛
𝑖=1  ).         (11.1.2) 
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 Because the kernel is a weighting function it must have the following properties 

i) It should be positive and integrate to unity over the band,  

ii) It should be symmetric around zero so the points below zero receive the same weights 

as those with the same distance above zero 

iii)  It should be decreasing in the absolute value of its argument. 

The rectangular kernel, for instance, puts equal weight on all observations in the band. Therefore, 

it does not have the last property. There are several well-known kernel estimators based on (11.1.2) 

that meet i-iii conditions, each based on a different weighing scheme for K. The three most 

commonly employed are the Epanechniko kernel, the Gaussian kernel, and the quartic or 

“biweight” kernel. In each of the following h is the bandwidth and ti = (x-xi)/h.  

The Epanechnikov kernel 𝐾𝐸(𝑡𝑖) is of the form: 

                                                     𝐾𝐸(𝑡𝑖) =
0.75(1−0.2𝑡𝑖

2)

√5
 𝑡𝑖

2 < 5;  

= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The Epanechnikov weights have an inverted U-shape curve, falling to zero at the band’s edges. 

The Gaussian kernel is a classic symmetric density function that does not use a discrete band; it 

gives no weight to out of the band observations, but within band observations all receive some 

weights. The Gaussian normality, however, ensures the density estimate at point x gives very little 

weight to any observation further than 3h from x. 

 The Gaussian kernel 𝐾𝐺(𝑡𝑖) is of the form: 

𝐾𝐺(𝑡𝑖) =  
1

√2𝜋
𝑒−

𝑡𝑖
2

2  

The quartic kernel is similar to the Epanechnikov but with derivatives that are continuous at the  

band’s edge. The Biweight kernel KB(ti) is of the form: 

𝐾𝐵(𝑡𝑖) =
15

16
(1 − 𝑡𝑖

2)2  |𝑡𝑖| < 1  

= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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Therefore, this kernel is more suitable for a continuous variable such as total expenditure.  

Empirical evidence shows that the choice between these alternative kernels is not as critical 

while the choice of a bandwidth, also known as a smoothing parameter, is rather important. This 

is because the bandwidth controls the trade-off between bias and variance: large bands give smooth 

curves but risk bias by using observations dissimilar to the data point x, while small band provide 

a more accurate picture of the data but at the cost of introducing greater variability into the density 

plot.  

In parametric inference, this trade-off is based on minimizing the mean-squared error 

(MSE) of the parameter estimates; the MSE measures the dispersion around the true value of the 

parameter being estimated. For unbiased estimators, this is equal to the OLS variance measured 

by dispersion around the sample mean, but for biased estimators there is an optimal trade-off 

between bias and efficiency measured by the MSE. However, the importance of this trade-off 

arises also from its relationship to the quadratic loss function that measures predicted error based 

on the difference between the parameter estimate and its true population value. This error is equal 

to the MSE. To see this, write the expected value the estimate �̂� from its true population value as  

E(β − �̂�)2=E(�̂�2)+E(β2) −2 βE(β)= [E(�̂�2) −β2][+ β2+E(β2) −2 βE(β)]= 

Var �̂� +[E(�̂�) – β]2=[Variance + Bias2] 

The MSE is a positive and a weighted measure that squares the positive and negative bias to ensure 

a positive bias2, and it gives equal weight given to the sum of variance and squared bias. However, 

unlike the parametric inference, the aim of the nonparametric application is not to estimate a 

parameter, but a function with mean squared errors for each point of the estimated density. 

Therefore, it is natural to minimize the expectation of the integral of the squared error over the 

whole density, called the mean integrated squared error (MISE), leading to: 

𝑀𝐼𝑆𝐸(𝑓𝑒) = ∫ (𝐸(𝑓𝑒(𝑥)) − 𝑓(𝑥))
2

𝑑𝑥 + ∫𝑣𝑎𝑟(𝑓𝑒(𝑥))𝑑𝑥   (11.1.3) 

which is the integrated squared bias plus the integrated variance. It makes sense to minimize 

MISE by choosing h and a weighting kernel  function. Rewriting K* = K/h , we note that: 

𝐸(𝑓𝑒) =  
1

𝑛
∑ 𝐸(𝐾∗(𝑡𝑖))

𝑛
𝑖=1 = ∫𝐾∗(𝑡)𝑓(𝑥)𝑑𝑥     (11.1.4) 
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which, for a given f, does not depend upon n but only on K and h. This suggests increasing the 

sample size alone will not reduce the bias. The choices of h and K are important. Silverman 

(1986) obtained an approximate optimal bandwidth for the MISE of a kernel function. For 

kernels that are symmetric about zero with continuous derivatives at all orders with a variance 

vk, it can be shown that the approximate optimal h is equal to:  

h*=𝑣𝐾

−
2

5(∫𝐾(𝑡)2 𝑑𝑡)
1

5(∫𝑓′′(𝑥)2𝑑𝑥)
−1

5 𝑛
−1

5       (11.1.5) 

The drawback of this measure is that this “optimal h” depends on knowledge of the unknown 

density f ( ) we are trying to estimate. However, (11.1.5) confirms that the optimal window gets 

smaller as the sample size grows (last term) but it does so slowly, in (inverse proportion to the fifth 

root of n, and as the degree of fluctuation of the unknown function increases (penultimate term). 

Note the effect of the absolute size of the second derivative of the density. If there is a large amount 

of curvature, the band estimates based on averaging in a band will be biased, so the bandwidth 

should be small; on the other hand, on the approximately linear segments of the density, the 

bandwidth should be large.  

Often an adequate procedure is to plot with different bands and then judge by eye if it is 

under or over smoothed; though the eye can ignore variability it judges to be artificial or fail to 

spot the features covered up by oversmoothing. It is therefore, helpful to have a good bandwidth 

to start the calculations with, and some guidance is available for doing so. Substituting the value 

of the optimal h back into the formula for the mean integrated squared error and minimizing with 

respect to k, (11.1.5) results in the Epanechnikov kernel. If both the kernel and the density are 

Gaussian, then (11.1.5) results in an optimal bandwidth of 1.06σN -1/5 with σ as the standard 

deviation of the density. Even better results can be obtained by replacing σ a robust measure 

of spread that gives the optimal bandwidth as 

h*=1.06 min(σ, 0.75IQR)N-1/5 

where IQR is the difference between the 75th and 25th percentiles, the interquartile range.  

For the Epaechnikov, the multiplying factor is 2.34 and with the quartic 2.42.  The relative 

efficiencies of kernels can be shown to be .9512 for the Gaussian kernel, .9939 for the Biweight 
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kernel and .9295 for the rectangular, suggesting that there is little to choose between kernels on 

efficiency grounds.  

For non-parametric purposes that go beyond graphical presentation, we need a more 

objective method of selecting the window band. The most common among these is cross-

validation, Silverman (1986, pp. 48-6). Cross-validation obtains different density estimates from 

different bandwidths, and then selects a bandwidth that minimizes error. There are also alternative 

non-kernel adaptive methods that adapt the bandwidth to the availability of data of points at each 

region of the density function. A kernel method has a fixed number of observations falling into 

each bandwidth. By contrast, the nearest neighborhood method is adaptive, it adapts the amount 

of smoothing to the ‘local’ density of data controlled by an integer k that is considerably smaller 

that the sample size n, and usually approximates the square root of n. The number of observations 

in a bandwidth of the nearest neighborhood box is inversely proportional to the size of the box 

required to contain a given number of observations. It is therefore, larger in the tails of the density 

than in its main part in order to reduce the problem of undersmoothing in the tails with sparse 

observations. Since these alternatives are also employed for nonparametric regression, we examine 

them next.   

 

11.2 Nonparametric Kernel Regression 

The nonparametric approach can also overcome the limitation of parametric regression 

analysis that is defined as conditional expectation E(y|x)=m(xi)=α + βxi. The latter assumes that 

(yi, xi) is a bivariate normal density. The normal distribution then justifies the parametric 

assumption of linear specification. However, if the true distribution is not normal, then E(y|x) 

becomes invalid, giving rise to the misspecification problem, making the least square estimator 

biased and inconsistent. By assuming no functional form for the regression, nonparametric 

estimators offer a solution to the misspecification problem.  

The basic idea is, for each x point, to average the yi corresponding to xi in an interval 

around x, and then to form �̂� =  
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
. Given the equation error term u, we can write �̂� 

�̂� = 𝑚 + 
∑ 𝑢𝑖

𝑛
𝑖=1

𝑛
        (11.2.1) 
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Then, E(ui)=0 as n → ∞, which makes 𝑚⏞  a consistent estimator of m. We can run a regression 

function by this method using the sample observation to calculate the average of all y-values 

corresponding to each x or a vector of x’s. Of course, there are no points exactly at each x but we 

solve this problem by averaging over the points “near” x, where we define nearness in terms of a 

bandwidth that reduces to zero as the sample size increases; weighted appropriately to avoid 

discontinuities. This method is effectively a rectangular kernel regression, similar to time-series 

smoothing by a moving average over a number of adjacent points. yi‘s are added accumulatively; 

weighted by their  kernel weight, that is 

�̂�(𝑥) =  ∑ 𝑦𝑖  𝐾 (
𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1  ∑ 𝐾 (
𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1⁄ .      (11.2.2) 

When h = ∞, we have �̂� = ∑ yi/n, and when h = 0, �̂�(𝑥𝑖) = yi. The estimated regression function 

is a weighted average of the y’s with the 𝑤𝑖weights given by (11.2.2): 

�̂�(𝑥) = ∑𝑤𝑖(𝑥)

𝑛

𝑖=1

𝑦𝑖 

Where the weights depend on how far away each 𝑥𝑖 is from the point at which we do the 

calculation.   

A common method of choosing the optimal band h*for a kernel regression is by the leave-

one-out cross-validation.  

CV(h*)=∑ (𝑦𝑖 − �̂�−𝑖
𝑁

= 1 (𝑥𝑖))
2π(𝑥𝑖)    (11.2.3) 

where the weights π(𝑥𝑖). π(𝑥𝑖) is introduced to downweight the end points as the local weights, 

which can be highly biased at such points, and  

�̂�−𝑖(𝑥𝑖)= ∑ 𝑤𝑗𝑖,ℎ
𝑛
𝑖=1 𝑦𝑖/∑ 𝑤𝑗𝑖,ℎ

𝑛
𝑖=1        (11.2.4) 

(11.2.4) is a leave-one-out estimate of �̂�𝑖(𝑥𝑖) obtained from the kernel (11.2.2) formula. The 

procedure validates the ability to predict the ith observation using all other observations except 

the ith observation, otherwise CV(h*) would be trivially minimized when  �̂�𝑖(𝑥𝑖)= 𝑦𝑖 

In practice, there will be difficulties with nonparametric regression whenever 𝑥𝑖 does not 

occur frequently, namely, is close to zero; then it does not make sense to average y on its x any 
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more, and the regression function becomes very imprecise in the vicinity of very small values of 

x. For this reason, the kernel estimators with a fixed bandwidth are usually truncated at the tails, 

see Silverman (1986). 

 

i. Alternative Nonparametric Regression 

The problem of sparseness in data can be overcome by averaging observed values of y 

appropriately weighted when x is close to 𝑥0 where the weights are 𝑤𝑖0=1/N0 if  𝑥𝑖 = 𝑥0and qual 

0 if 𝑥𝑖 ≠ 𝑥0. 

There are alternative to kernel regression that estimate nonparametric functions by a 

locally weighted average of  

�̂�(𝑥0) = ∑ 𝑤𝑖0,ℎ
𝑛
𝑖=1 𝑦𝑖        (11.2.5) 

The weights differ with the point of evaluation 𝑥0 and the sample value of 𝑥𝑖 and sum up so 

∑ 𝑤𝑖0,ℎ
𝑛
𝑖=1 =1. Local regression uses weights that are decreasing in |𝑥𝑖 − 𝑥0|.  

 One method is to order the observations by increasing  𝑥𝑖values, from that at the point 0 

to points i, and then evaluate at 𝑥0 = 𝑥𝑖 so 

�̂�𝑘(𝑥𝑖)= 
1

𝑘
(𝑦

𝑖− 
𝑘−1

2

+ . . . +𝑦
𝑖− 

𝑘−1

2
 
) 

Then a locally weighted average estimator can be defined based on this ordering with weights as 

𝑤𝑖0,ℎ =
1

𝑘
 1 (|𝑖 − 0| <

𝑘−1

2
)     (11.2.6) 

where |i – 0| is the distance of i observation from the evaluation point 0. (11.2.6) is called the  k-

nearest neighborhood estimator (k-NN) with 1 as an indicator function, it is a local regression 

with the equally weighted average of the y values for the k observations 𝑥𝑖closest to 𝑥0. Define 

as Nk(𝑥0) to be the set of k such observations. Then 

�̂�𝑘−𝑁𝑁(𝑥0)=1/k∑ 1𝑛
𝑖=1 (𝑥𝑖 ∈ 𝑁𝑖(𝑥0))𝑦𝑖     (11.2.7) 

Note how the estimator band is defined in terms of k, not h. This estimator has a uniform weight 

kernel but with a variable bandwidth; the bandwidth ℎ0 at 𝑥0 equals the distance between 𝑥0 and 
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the furthest of the k nearest neighbors; more formally ℎ0≅ k/[2Nf (𝑥0)]. The k/N is called the 

span. 

Another problem is estimation bias arising from employing the same kernel weight 

function over the entire range of the density function with all data points, or with estimation bias 

at the band “ends” by fitting a linear function. Figure 11.1 explains the possible sources of kernel 

bias with a simplified three, equally spaced data points x1, x2, and x3; two regression lines linear 

m1 and curved m2. Start with m2 estimated at point x2 with the band defined to cover x1 and x3 so 

all three contribute to the fitted conditional mean as the weighted average of y1, and y3* with equal 

weight, and y2* with the biggest weight. If the curve is concave, the average has to be less than 

y2*, so m2 regression results in a downward bias (reverse if m2 is convex), unless m2 is linear. 

However, the bias gradually disappears as N→∞, the bandwidth becomes smaller and at the 

extreme alone would contribute to the fitted dependent variable. In practice, we can reduce 

the bias by transforming data logarithmically.  

Figure11.1 nonlinear & linear sources of bias in Kernel Regression 

 

Even then, linear regression by m1 can still generate bias even if fitted with a kernel weight 

function. Figure 11.1 now shows the bandwidth containing five observations; with data 

points xA and xB, they are no longer equally distanced. y2 still gets the most weight, but y-

value corresponding to xA and xB also receive some positive weight, so the estimation is 

biased upward. This biased is most serious at the “ends” bandwidth points. For example, at 

the smallest value, x1, the average of nearby points is all to the right of x1. Therefore, there 

will be upward, or downward bias (depending on a positive or negative regression slope). 

The problem will become less acute as the bandwidth shrinks to include only the points that 

are close to the center but remains a major source of bias at the “end” points. To sum up, with 

the kernel function close to linearity or linear regression with a suitable kernel weighting 
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function, these sources of estimation bias can be removed. This raises the question of 

combining the best of m1 and m2, namely a series of locally-weighted kernel OLS applied to 

each bandwidth separately instead of all data points together; that is what the locally 

weighted average estimator does.  

The kernel regression estimator is a local constant estimator that assumes m(x) is a constant 

in the local neighborhood of 𝑥0. Instead, we can assume m(x) is linear in the neighborhood of 𝑥0, 

so m(x)=a0+ b0 (𝑥 − 𝑥0) in the neighborhood of 𝑥0. The local linear estimator minimizes  

∑ 𝑘(
𝑥− 𝑥0

ℎ

𝑁
𝑖 )(𝑦𝑖 − 𝑎0 + 𝑏0 (𝑥 − 𝑥0) )

2     (11.2.8) 

w.r.t m0=a0 + b0 ((𝑥𝑖 − 𝑥0). If the estimate is at exactly 𝑥0, then  �̂�(x)= �̂�0. Therefore, �̂�0 

provides an estimate of the first derivative �̂�’(x0). The generalized local linear estimator (11.2.8) 

leads to a local polynomial estimator of degree p that minimizes 

∑ 𝑘(
𝑥− 𝑥0

ℎ

𝑁
𝑖 )(𝑦𝑖 − 𝑎0,0 − 𝑏0,1(𝑥𝑖 − 𝑥0)−. . . −𝑎0,𝑝 (

(𝑥𝑖− 𝑥0)

𝑝!
) 2  (11.2.9) 

Fan and Gijbels (1996) point out several desirable features of (11.2.9). Estimation only 

requires weighted least-squares regression at each 𝑥0 point expressed as a weighted average of 𝑦𝑖; 

it has a bias term that does not depend on �̂�′(x0). Therefore, this estimator is particularly useful to 

deal with the boundary problem. This estimator can be applied with a locally, adaptive variable 

bandwidth, such as the k-NN to deal with the problem of scarcity of data at the tails of the 

distribution.    

Alternative weights to the symmetric k-NN result in improved estimates of m(x). A standard 

version of the (11.2.9) estimator is the locally weighted scatterplot smoothing or Lowess estimator, 

Cleveland (1979). Lowess regression leads to a much smoother estimates and more precise 

estimation at the boundaries. This estimator has a variable bandwidth ℎ0,𝑘 determined by the 

distance from  𝑥0 to the nearest neighbor and reduces the weights on observations with large 

residuals [yi − �̂�(xi)]. The variable bandwidth of Lowess makes it robust  against outliers, and its 

use of the polynomial estimator minimizes boundary problems but the method is computationally 

intensive.  
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The cubic smoothing Spline estimator �̂�λ(x) minimizes the penalized residual sum of 

squares 

PRSS (λ)= ∑ (𝑦𝑖 −  𝑚
𝑁

= 1 (𝑥𝑖))
2+λ∫(m’’(x))2dx    (11.2.10) 

where λ is a smoothing parameter; the first term produces a very crude fit because then  

�̂�λ(x)= 𝑦𝑖, but the second term penalizes roughness. Cross-validation is used to determine λ as a 

large λ results in a smoother plot.  

However, the main attraction of nonparametric regression is its distribution-free method, 

allowing the data itself to choose the parameter estimates and the shape of the curve that is best 

suited to the sample at hand. But there is a cost to this advantage; the major shortcoming of non-

parametric regression is its inability handle analysis involving more than a few dimensions; indeed, 

as the number of variables increase beyond two or three, the sample size required to minimize the 

MISE increases phenomenally, Silverman (1986, page 94, table 4.2) shows that required sample 

size jumps from 67 for three variables to close to a million with ten variables.  This is called the 

curse of dimensionality of nonparametric analysis. It is a serious limitation for the type of 

regression required for multiple variables, which typically include more, sometimes many more, 

than a few variables. The development of semi-parametric econometrics is a response to this 

limitation. 

 

11.3 Semiparametric Regression and Tests. 

Semi-parametric econometrics combines the advantages of a nonparametric approach with 

the abilities of multivariate regression by retaining the linear parametric structure but applying 

non-parametric methods to a small subset of the principal variables, usually just one. For example, 

in the analysis of household expenditure surveys, the typical nonparametric component of a 

multivariate regression is its lead variable, namely total expenditure. A well-known 

semiparametric regression is Robinson (1988) partially linear semi-parametric estimator. The 

Robinson approach obtains the expected value of the dependent variable regressed 

nonparametrically on the lead variable with unknown functional form, and, in addition, regresses 

each of the parametric variables on that lead variable, again nonparametrically, to obtain similar 

expected values for each. Therefore, it performs as many non-parametric regressions as the number 

of independent variables in the equation, plus an additional one with the dependent variable. The 
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effect of nonparametric components in the equation at hand are then controlled by subtracting the 

expected values from each of the corresponding variables. The new equation, with mean-

differenced variables thus defined is then estimated by OLS without the bias resulting from the 

effect of functional form misspecification. Take as an example the budget share equation with the 

flexible Working-Leser functional form specification 

y=α+ 𝛾.ln x +β.z +ε. 

Its semi-parametric version is written as 

                                                         y= F(ln x) +β.z +ε      (11.3.1) 

where let us say x stands for total expenditure and z is a vector of all other variables, for example,  

demographics, regions, etc.; and F is the unknown function for x. In the first step, the conditional 

means of E(y|ln x), and  each E(z|ln x) are estimated non-parametrically. In the second stage, 

E(y|ln x), and  each E(z|ln x) are subtracted from both sides of the equation, giving 

y - E(y|ln x) = { z- E(z|ln x) }.β +ε.         (11.3.2) 

(11.3.2) is the Robinson estimator, with the left-hand, a mean-differenced-variable, regressed on a 

vector of differenced z variables; differencing removes the effects of the unknown function form 

for the lead variables, thereby correcting the  misspecification effect due to functional form, in all 

the model’s variables. The OLS can now be applied to this equation to obtain an unbiased 

parameter estimate. The OLS estimator of β is √N consistent (converges asymptotically to the 

population mean at a quicker rate of 1/√N than the rate of increase is as the sample size N →∞), 

and asymptotically normal with  

√N (�̂�𝑃𝐿 −  𝛽) →d Ɲ [0, (plim
1

𝑁
∑ (𝑥𝑖

𝑁
𝑖=1 − 𝐸[𝑥𝑖|𝑧𝑖 ])(𝑥𝑖 − 𝐸[𝑥𝑖|𝑧𝑖 ])/ ) – 1]   (11.3.3) 

A variety of nonparametric estimator can be employed for (11.3.3) and the estimator can be 

trimmed; Robinson used kernel estimates that require convergence at no slower than N-1/4. 

Therefore, oversmoothing or higher order kernels are necessary when the dimension of z is large. 

For applications of Robinson’s estimator to expenditure share equations in Pakistan and China, 

see (Bhalotra and Attfield 1998 and Gong et. al 2005).     
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Robinson’s multiple nonparametric application can be onerous when the equation to be 

estimated contains a large set of variables, involving a large number of nonparametric regressions. 

A good alternative is provided by the differencing approach developed by Yatchew (1997, 2003). 

In this approach, the data on the variable with unknown functional form is sorted in increasing 

order so that x1≤x2≤…≤xT. Then Yatchew suggests first differencing the data to obtain: 

Yt – yt-1 =(zt – zt-1).β+ [F (xt) – F(xt-1)] + (εt - εt-1), t=2, …,T .   (11.3.4) 

Then as sample size increases, the (xt – xt-1) differences shrink at a rate of 1/T so that F(xt-1) tends 

to cancel F (xt) and the OLS estimator of β is consistent asymptotically. Once the effect of the 

variable with an unknown functional form has been removed to obtain consistent estimates for the 

remaining parameters, Yatchew regresses Yt on F(xt) nonparamertically, using a kernel or an 

adaptive method. This method applies nonparametric regression just once compared to multiple 

applications of the Robinson method. However, the Yatchew method tends to produce larger 

standard errors. With first differencing, the Yatchew method achieves about 66.7% efficiency 

relative to Robinson’s estimator. Yatchew argues that this can be improved substantially through 

higher order differencing by estimating a generalized version of his first-differenced equation: 

∑ 𝑑𝑗 𝑦𝑡−𝑗
𝑚
𝑗=𝑜 = ( ∑ 𝑑𝑗 𝑧𝑡−𝑗  )𝛽 + ∑ 𝑑𝑗 𝑓(𝑥𝑡−𝑗)

𝑚
𝑗=𝑜 + ∑ 𝑑𝑗 𝜀𝑡−𝑗

𝑚
𝑗=𝑜  𝑚

𝑗=𝑜    (11.3.5) 

where m is the order of differencing. To ensure differencing removes the nonparametric effect as 

sample size increases, Yatchew imposes ∑ 𝑑𝑗 = 0𝑚
𝑗=𝑜  condition; he also imposes a  ∑ (𝑑𝑗2) = 1𝑚

𝑗=𝑜  

condition to ensure the residual of the generalized differenced equation has a constant variance 𝜎𝜀
2. 

Yetchew provides a table of optimal differencing weights (Yetchew page 61) that ensure the higher 

order differences decline toward zero. Given these, he compares the standard errors of his 

differencing semi-parametric estimation with those of the partial linear method of Robinson, this 

indicates after using tenth-order differencing, the differencing method still produces marginally 

larger standard errors, see (Yatchew 2003, p. 74).  

Finally, we are often interested in testing if the parametric and semi-parametric equations 

differ from each other, expanding the former to contain a quadratic term for its lead term. Two 

more commonly employed methods for this type of specification test are Hardle and Mammen 

(1993), and Yatchew (1997, page 703). The Hardle-Mammen test compares the nonparametric and 

parametric regression fits based on squared deviations between them; the resulting test statistic is 
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𝑇𝑛 = 𝑁 √ℎ  ∑ {(𝑓(𝑥𝑖) − 𝑓(𝑥𝑖, 𝛽)}2 𝜋𝑁
𝑖=1 (. )      (11.3.6) 

Where (𝑓(𝑥𝑖) & 𝑓(𝑥𝑖, 𝛽) are the estimated nonparametric and parametric functions respectively, 

h is the bandwidth employed and π (.) is a weighting function for the squared deviations between 

fits. To obtain critical confidence interval bands for this test statistic, the Hardel-Mammen method 

relies on simulated values by wild bootstrap, see chapter 12, to generate a standard error density 

distribution function. The null hypothesis is that the two models are not different, and failing to 

reject suggests that the polynomial parametric model is at least of a quadratic degree, for an 

application see Bhalotra and Attfield (1998), or Koohi-Kamali (2019).  

Yatchew’s specification test statistic is based on comparing two estimates of the residual 

variance. The first estimate, the residual variance obtained from the partially linear Robinson 

estimator (11.3.2) after sorting the data by ln. x, is  

𝑠𝑑𝑖𝑓𝑓
2 =

1

2𝑛
 ∑(∆𝑦𝑖 − �̂�∆ 𝑥𝑖)

2       (11.3.7) 

The second residual variance is the average sum of squared residuals of the parametric model, 𝑠𝑟𝑒𝑠
2  

Under the null hypothesis that parametric specification is correct, Yatchew’s test statistic is 

V= n1/2 (𝑠𝑟𝑒𝑠
2 − 𝑠𝑑𝑖𝑓𝑓

2  ) /(𝑠𝑑𝑖𝑓𝑓
2 )2       (11.3.8) 

Readings 

For textbook discussion, see Silverman (1986) on non-parametric methods, Cameron and Trivedi 

(2005, chapter 9) covers semi-parametric methods. Robinson (1988) proposed the root-N 

consistent semi-parametric estimator; see Gong et. al. (2005) for an interesting application.      
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Chapter 11 None & Semi Parametric Exercises 

Q11.1 Download use mus02psid92m.dta, the set contains log of earnings, lnearns. 

 a. Draw histrogram for lnearns with bin=40, width=.25 and start =4 set for lower limit of 

 1st bin 

 b. Plot the nonparametric density with "Epan" kernel (default, so on need to request) for 

lnearns overlaid on normal kernel density (bin)bwidth=0.2 and comment on the outcome 

 c. Nonparametric regression: regress lnearns on hours by lowess with default width=.8 and 

 smoother width=1.6 to compare outcome 

 d. Nonparametric regression: regress lnearns on hours by local polynomial. 

 e. Plot lowess and lpoly overlaid and compare the outcomes 

 f. Regress lnearns on hours by K-NN, the change bwidth to 10, 100, 500 and comment on 

 outcomes. you must first download user-written "kernreg" for this question. 

 g.  Contrast the outcome changing default kercode=4(quartic)above with 3 (Epan) and 6 

 (Gaussain). 

Q11.2 Download hprice3.dta containing distance local house prices and their distances from a 

local incinerator.   

 a. Fit a semiparametric regression of lprice on ldist larea lland rooms baths age, treating 

 "linst" from incinerator nonparametrically, why there is no estimate for that variable? 

 b. Test the Robinson semiparametric against a quadratic functional form for linst-lprice 

 relationship using H¨ardle and Mammen’s test; why do you need replication for this test? 
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Chapter 12 Bootstrap 

Introduction 

Applied econometrics often has no way of obtaining exact finite-sample results and relies on asymptotic 

theory for approximation. The bootstrap, invented by Efron (1979), provides an alternative approximation 

method by simulation, applied to resampling from the empirical distribution, with results that are only exact 

in infinitely large samples. The most common use of the bootstrap is in hypothesis testing, particularly for 

standard error estimation and approximation of probabilities in the tails of the distribution of interest; other 

bootstrap applications are to confidence interval and bias reduction estimations. The bootstrap 

approximations fall into two broad categories; applications for statistical inference when the usual standard 

error computations are difficult to obtain, and applications that further refine approximation in finite 

samples.  

12.1 Bootstrap without refinement      

Suppose we wish to estimate the variance of the sample mean �̂�=�̅� of a random variable yi iid[μ, σ2], but 

the variance is not known. V( �̂�) can be obtained from S times resampling from the original sample. A 

bootstrap treats the actual sample data of size N, y1, . . .,yN , as the population and obtains B random draws 

with replacement of the same size N from the “population” to construct B estimates of 𝜃𝑏 = �̅�𝑏, b=1, . . , 

B, and use those to estimate  

V(𝜃) = (B-1)-1∑ (𝐵
𝑏=1 𝜃𝑏 − �̅̂�𝑏)2       (12.1.1) 

where �̅̂�𝒃 is the average of ∑ (𝐵
𝑏=1 𝜃𝑏) and standard errors computed from √𝑉(𝜃) ; this is called the 

bootstrap estimate of the standard error. (12.1.1) is the major equation for bootstrap standard error 

estimation and provide the basis for bias-reduction of the bootstrap estimation, see section v below. The 

approach replicates the dgp of the original sample. In general, we rely on bootstrapping when standard 

errors are difficult to compute. For example, if a 2sls estimator expected value of variable from a first stage, 

based on homoscedasticity, is used to estimate a parameter in a second stage, would be hard to calculate 

the standard errors because of the additional random component due to the possible first stage 

heteroskedasticity The estimate may be a function of other parameters when the coefficient estimation 

involves a non-linear function of two parameters 𝜃 =
Ø̂

�̂�
; or when a robust procedure against 

heteroskedasticity does not exist.  
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i. Algorithm  

The implementation of a bootstrap follows the general algorithm below: 

1-Given a sample of y1, . . . . . ,yN, we draw a bootstrap sample of size N by one of the  bootstrap methods 

discussed below as y*1, . . . . . ,y*N. 

2-Calculate the statistic of interest from the bootstrap sample in 1, such as 𝜃, or 𝑆�̂� , or  

t*=(𝜃*- 𝜃)/𝑆�̂� . 

3-Repeat steps 1 & 2 a large number of B times to obtain B replications of 𝜃1, . . . , 𝜃B, or  

𝑆�̂� 1, . . . , 𝑆�̂� B,  or  t1*, . . . , tB*. 

4-Use the replications to obtain a bootstrap version of the statistic of interest.  

 This procedure is similar to a Monte Carlo simulation treatment of initial sample parameter 

estimates as the “true” values with the actual values of the explanatory variables as the “fixed in repeated 

samples”. However, to complete such a simulation, the errors must be drawn from a known distribution 

such as the normal, and this is a principal weakness of the Monte Carlo simulation. The bootstrap simulation 

offers a method of avoiding this problem because it does not assume a known error distribution. The 

simplest bootstrap is to assume that the unknown error term distribution can be reasonably well-

approximated by a discrete distribution that gives equal weights to each residual of the original estimation. 

Given an additive iid error, we obtain fitted residuals �̂�1, . . ., �̂�𝑁 where �̂�𝑖 = 𝑦𝑖 − 𝑔(𝐱𝑖 , �̂�). Step 1 treats 

the fitted values as a new draw of residuals  �̂�1
∗, . . . , �̂�𝑁

∗ , leading to a bootstrap sample of 𝑦𝑖
∗= 𝑔(𝐱𝑖 , �̂�)+ �̂�𝑖

∗. 

This is called a residual bootstrap and it can be employed if the error term has a distribution that does not 

depend on unknown parameters. With a reasonable sample size, most of the residuals will have small 

absolute values, even though each receives equal weight, so, repeated random draws produce small values 

more frequently than large values. Nonetheless, in some circumstances, the residual bootstrap assumption 

of exchangeable errors with equal likelihood of occurring may not be true. For example, with 

heteroskedastic errors, if larger error variances are correlated with larger explanatory variables, then larger 

errors are more likely to occur with larger values of the explanatory variable. Another bootstrap sampling 

method, based on random draws from the pair of wi = g(yi, xi) can overcome this problem.  

ii. Bootstrap Methods 

The bootstrap from wi = g(yi, xi) leads to 𝑤1
∗, . . . , 𝑤𝑁

∗ obtained by sampling with replacement from the original 

sample  𝑤1, . . ., 𝑤𝑁 randomly; therefore, some of the original points may appear more than once, some 



 185 

none at all. This is an empirical or nonparametric bootstrap; it is also called a paired or complete 

bootstrap since here both yi & xi are resampled. The paired bootstrap has three new features. First, it 

implicitly pairs the true, unknown errors as a part of the dependent variable, with the original explanatory 

variables uncorrelated with errors. Second, it does not use estimates of the unknown parameters but 

implicitly employs the true parameter values and the true functional form. Third, it abandons the assumption 

of explanatory variable values as fixed in repeated sampling; instead, the method assumes that the values 

are drawn from a distribution sufficiently approximated by a discrete distribution, giving equal weight to 

each observed vector of explanatory variables, as opposed to equal weight to each error value given by the 

residual method. The paired bootstrap is the most popular and the most frequently used bootstrap method 

because its simplicity, applicability to a wide range of nonlinear models, and use of weak distributional 

assumptions.  

 If the conditional distribution of the data is specified for example as y|x ~F(x, 𝜃0) and 𝜃 →p 𝜃0 is 

available, then step 1 becomes a bootstrap from the original xi to produce random draws from  F(x, 𝜃); 

corresponding to fixed regressors in repeated samples. This is a parametric bootstrap applicable to fully 

parametric models. A parametric bootstrap assumes the error distribution is known and therefore, it is a 

bootstrap that is in fact a Monte Carlo simulation. 

iii. How many Bootstraps? 

The bootstrap can be invalid for low B replications since it relies on N→∞. A sufficiently large B varies 

with tolerance for bootstrap-induced simulation error, or its relative discrepancy from the ideal bootstrap 

with B=∞, and with the reason for the bootstrap application. Let λ be the quantity of interest, namely, a 

standard error critical value, λ̂∞ represents the desired bootstrap estimate with B=∞, and λ̂𝐵 be the estimate 

with B bootstrap replications. Then it can be shown that  

√B (λ̂𝐵 - λ̂∞)/ λ̂∞) →d Ɲ[0, ω]       (12.1.2) 

and the relative discrepancy caused by only B replications is δ=|λ̂𝐵 - λ̂∞|/ λ̂∞; securing the relative 

discrepancy requires B≥ ω 𝑧𝜏/2
2 /𝛿2 where z stands for the standard normal random variable for symmetric, 

confidence interval tests.  The recommended rule of thumb for a practical application is B=384ω; therefore, 

for discrepancy < 10% with probability of 95% with z=1.907, we have 𝑧0.025
2 /0.12=384. The main problem, 

however, is that ω varies in each application depending on the estimation purposes. For standard error 

estimation, ω=(2+γ4)/4 where γ4 is the coefficient of excess kurtosis for the bootstrap estimator; fatter tails 

of the mean’s distribution distort standard error estimation. Thus, if γ4=0, then B=384*1/2=192 replications 
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is sufficient. But if γ4=4, then for a symmetric two-sided test or confidence interval at 95%, larger 

replications are needed. For p-value=0.05 test, ω=(1-p)/p =19, therefore B=7296.   

 A different approach is to focus on the loss of power due to bootstrapping with finite B (no loss if 

B=∞). Simulations based on this approach recommend B=399 at α=0.05%. For hypothesis testing choose 

B so that α(B+1) is an integer, namely, at α=0.05%, choose B=399 rather than 400; with B=400, the 20th 

and 21st largest bootstrap t-statistic are the critical values: 399*0.05=19.95, and 400*0.05=20.5, therefore, 

it is unclear with B=400 which is the largest on an upper one-sided test, see MacKinnon (2002).      

 12.2 Asymptotic Refinements 

Bootstrap procedures without asymptotic refinement are only exact in infinitely large samples; so their 

applications depend on asymptotic theory; moreover, the bootstrap approximation discussed above will 

offer no improvement in finite-sample performance. For that, we need the asymptotically refinement 

methods we examine now.  The bootstrap methos is most commonly used to estimate standard errors when 

an analytical solution is hard to obtain. The second most common use of the bootstrap method is for 

adjustment made to hypothesis tests for type I error (probability of rejecting a true hypothesis). However, 

there is an inconsistency between the two common uses of the bootstrap method, as the tests are based on 

the critical values that assume normally distributed errors, or are valid asymptotically, but not in small 

samples. However, the main point of the bootstrap applications is to avoid results that depend on the 

normality assumption. This suggests bootstrap standard errors should not use the normal table critical values 

if this assumption is in doubt. Similarly, that restriction should be observed for confidence interval 

estimation, that is, not to use the bootstrap method standard error estimates with the usual critical values; 

instead, we should find the critical values applicable to the problem at hand. For example, if we have 1000 

values of t statistic ordered from the smallest to the largest, a two-sided 90% test requires the 50th (1st half) 

and 95Th (10/2%) values; the bootstrap confidence interval is formed by subtracting the 50th and adding the 

95Th values to the estimated coefficient. Since the t-distribution differs from the normal at the tails, the 

interval can be asymmetrically around the coefficient estimate, unlike the normal confidence interval that 

is symmetric. This is an example of an asymptotic refinement that leads to a better bootstrap method 

approximation in a small, finite-sample rather than in a procedure based on the conventional asymptotic 

theory. 

 Asymptotic theory relies on the result of √N consistent estimator11√N (𝜃 -  𝜃0 ) →
d Ɲ[0, 𝝳2], hence 

 
11 A consistent estimator converges in probability to the true distribution of the parameter being estimated 

as the data points (n) increase indefinitely, while a root N consistent estimator additionally addresses the 

speed of the convergence, how quickly it converges to the true value.  The latter estimator is expressed as 
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Pr[√ N (𝜃 -  𝜃0 )/𝝳 ≤ z]=φ(z)+R1       (12.2.1) 

 where φ(z) is the standard normal cdf and R1 is a residual term that approaches zero as N→∞, a result based 

on the application of CLT, see Appendix. In particular, the Edgeworth expansion provides a better 

approximation method by including one additional term in the expansion as 

Pr[√N (𝜃 -  𝜃0 )/𝝳≤z]=φ(z)+ 
𝑔1(𝑧) 𝛷(𝑧)  

√𝑁
 + R2      (12.2.2) 

Where g1(.) is a bounded function, and R2 a residual term that disappears as N→∞. Since R1 is of the order 

of magnitude R1=O(N-1/2), and, since it is divided by √𝑁, and R2= O(N-1), then asymptotically R2< R1, 

produces a better approximation as N→∞12. A bootstrap method replication with asymptotic refinement 

provides an empirical method of obtaining the Edgeworth expansion that is hard to do duplicate 

analytically.   

 However, for asymptotic refinement to occur, the bootstrapped statistic must be an asymptotically 

pivotal statistic, meaning, that  it must have a limit distribution independent of unknown parameters. For 

example, sampling from yi ~ [μ, σ 2] to estimate �̂�=�̅�~𝑎Ɲ[𝜇, 𝜎2] is not asymptotically pivotal since its 

distribution depends on the unknown 𝜎2, but the studentized statistic t= (�̂� − 𝜇0)/𝑆𝜇 ̂~
𝑎Ɲ[0, 1]is 

asymptotically pivotal; other examples are chi-squared, Wald, etc.  

ii.  Hypothesis Testing 

We can employ upper one-sided, two-side, and other tests based on bootstrapping when the statistic of 

interest is difficult to obtain analytically; instead, we employ both asymptotically refined and without 

refinement bootstrap methods. 

. The usual statistic TN provides the potential for asymptotic refinement since its asymptotic normal 

distribution is independent of unknown parameters. The empirical distribution of t*
1, . . . , t

*
B , obtained 

from B resampling and ordered from smallest to largest, can be used to approximate the distribution of TN 

. For an upper one-sided test, for example at α=0.05% with B=999, the bootstrap critical value is the 950th 

largest value of t* since then (B+1)(1- α)=950 (when t* is ordered from low to high). A bootstrap p-value, 

as the largest value at which we still fail to reject the null, can also be computed from the replicated values. 

For example, if the original t statistic lies between the 914th and 915th largest values of 999 bootstrap 

replicates, then an upper one-sided test if z=(1-914)/(999+1)=- 0.913 corresponding to critical p =0.086 (at 

 
being bounded in probability in big O notation (see below) by 𝑂𝑝(1), or in terms of variance of 𝑇𝑛 as 

O(1/n). 
12 In a finite sample it is possible that R2>R1.  
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.05% for α/2). For a two-sided nonsymmetrical test, the bootstrap critical values are the lowest α/2 and 

upper α/2 quintiles of the ordered t* ; the null is rejected if the original t-statistic is outside this range. For 

a symmetrical test, the bootstrap critical value is the upper α quantile of the order |t*|; rejection is if |t |>|t*|. 

These methods use the percentile-t method for asymptotic refinement, and have the advantage of not 

requiring computation of 𝑆�̂� .  

iii.  Tests Without Refinement 

These tests compute t =(𝜃- 𝜃0)/𝑆�̂�,boot and compare this test statistic to critical values from the standard 

normal distribution. For a two-sided test, find the lower α/2 and upper α/2, and the null is rejected if 𝜃0falls 

outside this range. This is called the percentile method. 

iv.  Confidence Interval  

The percentile-t method 100(1- α) percent confidence interval is (𝜃 − 𝑡[1−𝛼/2]
∗ . 𝑆�̂� , 𝜃 + 𝑡[1−𝛼/2]

∗ . 𝑆�̂� ) where 

𝜃 and 𝑆�̂� are the estimate and standard error from the original sample. An alternative is the bias-corrected 

and accelerated (BCa) method that can offer asymptotic approximations for a broader range of problems 

than the percentile-t method.  

v.  Bias Reduction 

The bias is computed as the distance between the expected or population average value and the data 

generated parameter value E [𝜃]-θ. Bootstrap generated parameter averages are �̅�𝑏over the bootstraps. The 

bootstrap estimate of the bias is then 

Bias𝜃=(�̅�𝑏 − 𝜃)        (12.2.3) 

where �̅�𝑏is defined in (12.1.1). If for example, �̅�𝑏=5 and 𝜃=4, then there is an upward bias of 1; as a result, 

bias correction requires subtracting 1 from 𝜃. In general, the bootstrap bias-corrected estimator of θ is  

𝜃Boot=𝜃 − (�̅�𝑏 − 𝜃) = 2𝜃 − �̅�𝑏      (12.2.4) 

In practice bias correction is not used for √N consistent estimators since the bias is small relative to the 

standard error of the estimation. Bootstrap bias-correction is also employed for estimators that converge at 

a rate less than √N, in particular, in nonparametric density estimation and nonparametric regression.  

Example: Consider the data generated from a two-regressor exponential function from a sample 50 

observations; ML estimates are β̂1=-2.192 (intercept) and β̂2=0.267, s2=1.417, and t2=0.188; and β̂3=4.664, 

s3=1.741, and t3=2.679. Table 12.1 presents the results of implementing bootstrap method statistical 
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inference focused on β̂3 based on the paired bootstrap jointly resampled from (yi, x2i, x3i), with replacement 

B=999 times; for this bootstrap replication, the estimated mean and standard deviation of β̂3are 4.716 and 

1.939. 

Standard errors:  the bootstrap estimate without refinement is 1.939 compared to the conventional 

asymptotic estimate of 1.741. 

Testing with refinement: based on the asymptotically t statistic and computed from each bootstrap is  

T3
*=(�̂�3

∗ - 4.664)/𝑠�̂�3
∗ . The bootstrap critical values for a α=0.05% nonsymmetrical test are the lower and 

upper 2.5 percentiles of the 999 values of t3
*; from table 1 corresponding to the 2.5th lowest=-2.183 and 

2.5th highest =2.066 values. We reject the null since the original sample t3=(4.066-0)/1.741=2.679>2.066. 

The critical value for a symmetric test instead using the upper 5% of | t3
*|is 2.078, again rejecting H0. 

Testing without refinement: using the bootstrap rather than asymptotic standard errors, 

t3=(4.066-0)/1.939=2.405, leads again to rejecting H0 at either standard normal or t (with df=47) critical 

values.  

Confidence Intervals: Applying an asymptotic refinement at the 95% t results in  

(4.664 – 2.183x1.741, 4.664+2.066x1.741)=(0.864, 8.260) compared to a usual 95% asymptotic confidence 

interval 4.664∓1.960x1.939=(1.25, 8.08). The percentile method without refinement using the lower and 

upper 2.5 percentiles of the 999 bootstrap estimates leads to (0.501, 8.484) intervals.  

Bias correction: The estimated bias=(4.716-4.664)=0.052, small compared to S3=1.714; therefore, bias-

corrected β3 = 4.664-0.052=4.612. 

Table 12.1 Paired Bootstrap with B=999 
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Note that the bootstrap method is based in asymptotic theory and may lead to worse finite-sample 

approximation than that of conventional methods. To decide if the bootstrap is an improvement, a full 

Monte Carlo simulation is needed to obtain first 999 samples of size 50 drawn from the exponential dgp, 

then again, another bootstrap 999 times for each of these samples.     

v. Extensions 

A broader range of bootstrap methods beyond the √N consistent asymptotically normal estimators are also 

possible. 

Block Bootstrap: the moving block bootstrap method applies to the data that are dependent rather than 

independent by splitting the data into r non-overlapping blocks of length l, where r l ≅ N. The method treats 

randomly drawn blocks as independent of each other but permits dependence inside each block. The process 

requires r →∞ as N→∞ to ensure consecutive blocks are uncorrelated with each other; it also requires t 

→∞ as N→∞.  

Nested Bootstrap: The nested bootstrap method is a bootstrap within a bootstrap, usually employed when 

the bootstrap statistic is not asymptotically pivotal; it is especially useful when the standard errors are 

difficult to compute. Then, we can first bootstrap from the current sample to obtain 𝑆 ∗�̂�,boot used to form 

t* =(𝜃- 𝜃0)/𝑆 ∗�̂�,boot ; then apply the percentile-t method to the bootstrap replications t*
1, . . . , t

*
B  that 

provide an asymptotic refinement univariable from a single round of bootstrap. This type of iterated 

bootstrap method corrects for bias by improving bootstrap performance estimates that arise from a single 

bootstrap; each further iteration reduces bias by a factor of N-1 if the statistic is asymptotically pivotal and 

by a factor of N-1/2 otherwise.  

The Jackknife : The delete-one Jackknife is a method that forms N resamples of size (N -1) by sequentially 

deleting each observation and then estimating θ in each resample, thus it is not a randomly drawn 

resampling method. Let θ̂ be the original sample estimate with i=1, . . . , N, and the average of the N 

Jackknife estimates be θ̂=N-1 ∑ θ̂𝑖N
i=1 . The Jackknife BC (bias-corrected) of θ is 

𝜃jack=𝑁𝜃 − (𝑁 − 1)θ̅̂ = (1/𝑁 ∑ [𝑁𝑁
i=1 θ̅̂ − (𝑁 − 1)θ̂𝑖])   (12.2.5) 

The BCa method for a bootstrap with asymptotic refinement can also use the Jackknife. The bias appears 

large since it is scaled by (N -1) but note that the differences [θ̂(−𝑖) − θ̂̂] are much smaller than the bootstrap 

case because a Jackknife differs from the original sample by just one observation.  

The Jackknife estimation of standard errors of  𝜃 is obtained from 
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𝑠�̂�Jack[𝜃] = {
1

𝑁(𝑁−1)
∑ [𝑁𝑁

i=1 [θ̂(−𝑖) − θ̂̂]}1/2    (12.2.6) 

The squared (12.2.6) provides the Jackknife estimate of the VCE that is now largely replaced by the 

bootstrap. The Jackknife method requires less computation than the bootstrap in small samples but is 

computationally intensive if N is large.  

vi. Applications 

Wild Bootstrap for Heteroskedasticity: White’s heteroskedasticity-consistent covariance matrix 

performance has a poor performance in small samples; the bootstrap method can improve that. However, 

the residual bootstrap method assumes homoskedasticity, while the paired bootstrap method does not offer 

an asymptotic refinement. The Wild bootstrap method, see Mammon (1993), provides asymptotic 

refinement without imposing any structure on heteroskedasticity by replacing the OLS residual �̂�𝑡by the 

following residual: 

�̂�𝑖
∗ =

1−√5

2
�̂�𝑖≅ -0.6180�̂�𝑖 with probability 

1−√5

2√5
≅0.7236 

�̂�𝑖
∗ =[1- 

1−√5

2
]�̂�𝑖≅ 1.6180�̂�𝑖 with probability 1- 

1−√5

2√5
≅0.2764 

The evidence shows this bootstrap method works much better with heteroskedasticity compared to other 

bootstraps.  

Panel and Cluster Data: Assume that the errors �̂�𝑖𝑡 of a linear panel regression are independent over i, 

though they may be heteroskedastic and serially corelated over t for given i. For a short panel, T is finite 

and asymptotic theory relies on N→∞, then consistent standard errors can be obtained from a paired 

bootstrap that resamples over i but not over t. This is called the panel or block bootstrap method, based 

on the assumption of a short panel, and the data independent over i. This bootstrap can also be applied to 

clustered data provided the number of clusters tends to infinity. The bootstrap methods also employed in a 

panel data model with AR long time-series dimensions, see chapter 14 on a large heterogenous panel, and 

Pesaran (2015, 28.11.7-8).    

 

Appendix: Bootstrap Asymptotic Theory 

Consider the data X1, . . , XN that are independently drawn with cdf F0= F0 (x, 𝜃0 ) to estimate the statistic 

of interest TN=TN(X1, . . , XN), with its exact infinite sample distribution given as GN= GN (t, F0 ). The 

asymptotic theory uses the asymptotic distribution of TN, G∞= G∞ (t, F0 ). When GN= GN (. , F0 ) cannot be 
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determined analytically, bootstrap approximation of it is used by replacing the population cdf F0 with a 

consistent estimator FN obtained from the empirical distribution of the sample. One bootstrap re-sample 

renders the statistic T*
N and its repetition B independent times leads to replications T*

N, b; the empirical cdf 

of T*
N, b leads to the bootstrap estimate of the distribution of T, namely, the proportion of the bootstrap 

resample for the realized T*
N≤ 𝑡: 

𝐺N(t, FN)=
1

𝐵
∑ 𝟏(𝑇𝑁,𝑏

∗ ≤ 𝑡)𝐵
𝑏=1  

where 1(.) is an indicator equal to 1 if the event occurs, zero otherwise; consistency of the bootstrap estimate 

requires that GN (t, FN)→p GN (t, F0 ). 

One advantage of the bootstrap is that it allows asymptotic refinement, that is, it can produce better 

approximation than possible with the conventional asymptotic theory. The proof for this statement uses 

Edgeworth expansions.  

Consider Xi random variables standardized as ZN=∑i=1 Xi/√N  iid[0, 1]. The application of a CLT leads to 

cdf of ZN as 

GN(z)=Pr[ZN≤ z]=φ(z)+O(N-1 /2)      (12.1a) 

where O stands for the order of magnitude13 that approximates GN(z) by φ(z) and ignores the reminder 

term14.  

A better approximation is possible based on the cumulants15 of the Edgeworth expansion that adds two 

additional terms to (12.2.1a) resulting in 

GN(z)=Pr[ZN≤ z]=φ(z)+
𝑔1(𝑧)

√𝑁
+

𝑔2(𝑧)

𝑁
+O(N-3 /2)    (12.2.2a) 

 
13 Oder of magnitude for sequences of variables (expressed in  (O, o) notation), for a non-stochastic real 

number aN is O(g(N)) if lim(aN/g(N)) is finite nonzero, and o(g(N)), if lim(aN/g(N)) is zero. We often put 

g(N)=N-c for some constant c ≥0. That implies that aN= O(N-c) is of the same order of magnitude as the 

function N-c, and aN= o(N-c) if it is of a smaller order of magnitude of N-c. For example, (3/N + 5/N)2 is 

O(N-1) if for a large N; it behaves like a constant times N-1, and is o(N-1/2) > o(N-1) otherwise. 

       
14 𝜃 =𝜃0 + op(1) is consistent estimator 𝜃0 since the second term has zero probability. Additionally, 𝜃 is 

root-N consistent for 𝜃0 if 𝜃 =𝜃0 + Op(N
-1/2) since then N-1/2(𝜃 - 𝜃0)= op(1) as data points increase. 

 
15 The cumulants of a probability distribution are a set of quantities that determine the moments of the 

distribution. The first cumulant is the mean, the second cumulant is the variance, and the third cumulant is 

the same as the third central moment, but fourth and higher-order cumulants are not equal to central 

moments. Moreover, the third and higher-order cumulants of a normal distribution are zero; it is the only 

distribution with this property. 
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Where 𝑔1(𝑧)depends on z, φ(z) and the third cumulant of ZN, and  𝑔2(.) is another lengthy term. An 

Edgeworth expansion ignores the last term in (12.2.2a) and approximates GN (z, F0) by φ(z)+
𝑔1(𝑧)

√𝑁
+

𝑔2(𝑧)

𝑁
; 

that can be used to compute critical values and p-values. The problem is the cumulants can be very difficult 

to solve analytically. However, the bootstrap method offers a numerical method for the application of the 

Edgeworth expansion (12.2.2a) without the need to solve for the cumulants: 

GN(t, FN)=φ(z)+
𝑔1(𝑡, 𝐹𝑁)

√𝑁
+

𝑔2(𝑡, 𝐹𝑁)

𝑁
+O(N-3 /2)     (12.2.3a) 

Then the bootstrap estimator of GN(t, FN) is used to approximate the finite-sample cdf of GN(t, F0). 

Subtracting the latter from (12.2.3a) leads to  

GN(t, FN) - GN(t, F0)= G∞ (t, FN)- G∞ (t, F0)+ 
𝑔1(𝑡, 𝐹𝑁)−  𝑔2(𝑡, 𝐹0)  

√𝑁
 + O(N-1) (12.2.4a) 

Assuming FN is √N consistent for the true cdf F0, then FN – F0= O(N-1/2), (see the note and the text 

for (12.2.2)  above); therefore, both GN(t, FN) - GN(t, F0) and G∞ (t, FN)- G∞ (t, F0) are equal to O(N-1/2), so 

the bootstrap approximation is asymptotically no closer to GN(t, F0) than the standard asymptotic 

approximation G∞ (t, F0). However, suppose the statistic of interest TN is asymptotically pivotal as defined 

in the text, so G∞ does not depend on unknown parameters, then standardized TN has the standard normal 

limit distribution. Then G∞(t, FN)=G∞(t, F0); (12.2.4a) simplifies to  

GN(t, FN) - GN(t, F0)=N-1/2[ 𝑔1(𝑡, 𝐹𝑁) − 𝑔2(𝑡, 𝐹0)] + O(N-1)    (12.2.5a) 

 Since FN - F0=O(N-1/2), we also have [ 𝑔1(𝑡, 𝐹𝑁) − 𝑔2(𝑡, 𝐹0)]=O(N-1/2); therefore, 

GN(t, FN)= GN(t, F0) + O(N-1)       (12.2.6a) 

Which is an improvement over the conventional approximation GN (t, FN)= G∞(t, F0) + O(N-1/2) as long as 

TN is asymptotically pivotal. 

 

Readings 

For textbook discussion, see Cameron and Trivedi (2005, chapter 11); Efron and Tibshirani (1993) for an 

introduction to the bootstrap method. Efron (1979) invented the bootstrap method.   
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Chapter 12 Bootstrap Exercises 

Q12.1Download bootdata.dta, this is a data set for annual number of doctor’s visits.   

a. Use bsample command for simulation to write a program for one N re-sample that estimates a Poisson 

regression of docvis as a function of chronic with robust standard errors   

b.  Now simulate a. B=400 times 

c. Use 400 bootstrap values of tj
*, j=1, …,400 to estimate the p-value statistic. 

d. Employ the nonprametric (unconditional)bootstrap pairs method, using bsample, to estimate standard 

error with B=400 

e. Employ parametric (conditional) bootstrap, essentially, a Monte Carlo simulation, to re-run step d.  Use 

nbreg to deal with overdispersion estimation; employing rgamma for the gamma function  

f. Check the above outcome in e. using bootparametric command, bootstrap B=400 times.  

g. Now employ the residual bootstrap method; note that the bootstrap is from the original sample residuals 

(assumed to be iid), not the regressors  

h. Apply the wild bootstrap method to account for heteroskedasticity 

i. Apply the jackknife method as an alternative to the bootstrap method. 
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Chapter 13 Duration Models analysis 

Introduction 

Some economic models require an analysis of a duration of time collapsing before a certain event 

comes into effect, for example, a period of unemployment before entering, or re-entering, into 

employment, or a period of treatment before gaining full health. This chapter examines a range of 

duration models for different research purposes.  

13.1 Survivor & Hazard Functions 

Denote the duration of an event by T ≥ 0, with a distribution among the population, and denote its 

particular value as t. In biostatistics, T is the length of time a subject lives before extinction, for 

instance, the useful life of a lightbulb, or, a patient’s period of treatment before leaving hospital.  

In economics T is usually the time at which a person leaves the initial economic state, for example, 

if the initial state is unemployment, T would be the time spent in that state before becoming 

employed, or re-employed. We define the cumulative distribution function (cdf) of T by 

F(t)=P(T≤ t), t≥ 0        (13.1.1) 

We define the survivor function S(.)as the complement function to the cdf, i.e. periods of time 

taken to come out of the initial state, that is 

S(t)=P[T>t]=1 - F(t)        (13.1.2) 

In other words, (13.1.2) is the probability of “surviving” past time t, a cancer patient successfully 

completing the course of treatment, or workers ending the period of strike. Thus, as F(t) measures 

the probability that the duration is less than or equal to t, S(t) measures the probability that the 

duration T is greater than t. We assume that T is continuous and its pdf density represented by  

𝑓(𝑡) =
𝑑𝐹

𝑑𝑡
(𝑡)         (13.1.3) 

Then with a change in time t+h for a “small” h>0, the probability of exiting the initial state in the 

time interval [t, t+h): is given by 

P(t≤ T< t+h|T  ≥ t)        (13.1.4) 
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For example, the probability of leaving a hospital treatment given survival up to time t, or entering 

employment given being in the state of unemployment up to time t.   

For each t, we define the hazard function 𝜆(𝑡) as the instantaneous exit probability 

(instantaneous rate of exit) per unit of time; given a small increase in t by h. The hazard function 

provides an approximation for the conditional probability (13.1.4) by  

P(t≤ T< t+h|T  ≥ t) ≈ 𝜆(𝑡)ℎ       (13.1.5) 

Examples: For unemployment, if T is length of time unemployed, measured in weeks, then 𝜆(20) 

is approximately the probability of becoming employed between weeks 20 and 21 after 20 weeks 

of unemployment, or conditional on having been unemployed through week 20. For exampole, gun 

crime, suppose T stands for the number of months before a U S state experiences a major gun 

violence event. Then 𝜆(12) is roughly the probability of the US state experiencing gun violence 

during the 13th month, conditional not having seen such an event during the previous year. This is 

an example of recidivism duration as with, for example, 𝜆(6) for a 6-month course of a cancer 

eradication treatment before the patient has to terminate the program some time during the 7th 

month if there is relapse.  

The role of the hazard function in survival/duration analysis is to define a distribution 

function for t, and to do so we must obtain the density of T by driving the relationship of the hazard 

function density and cdf in a few steps.  

First, we note  

P(t≤ T< t+h|T  ≥ t)= 
𝐹(𝑡+ℎ) − 𝐹(𝑡)

1−𝐹(𝑡)
        (13.1.6) 

The instantaneous transition conditional on survival to time t defines (13.1.6) for ∆𝑡. We have  

𝑃(𝑡 ≤  𝑇 < 𝑡 + 𝛥𝑡|𝑇  ≥  𝑡) 

𝛥𝑡
 

If 𝛥𝑡 is a small change h, then this ratio is equal to differentiating cdf with respect to dt=h, for a 

small h>0, that is equal to f(t) given by (13.1.3). More formally, 

𝑓(𝑡) = 𝑙𝑖𝑚ℎ→0
𝐹(𝑡+ℎ) − 𝐹(𝑡)

ℎ
.         (13.1.7) 
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To obtain an approximate form for the hazard function, start from (13.1.6) as given by  

 
𝑓(𝑡)

(1−𝐹(𝑡)) 
  and substitute the denominator by (13.1.7) for approximation. Then, we can write 

𝑓(𝑡)

𝑆(𝑡) 
  

as the product of two separate terms, one of which is divided by h as h approaches zero from above, 

that is by: 

𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= 𝑙𝑖𝑚ℎ→0

𝐹(𝑡+ℎ) − 𝐹(𝑡)

ℎ
.

1

1−𝐹(𝑡)
     (13.1.8) 

(13.1.8) is the hazard function. The numerator of (13.1.8) for a small change h in t is, by (13.1.3)  

f(t) or by (13.1.7), while the denominator uses (13.1.2); 
𝑓(𝑡)

𝑆(𝑡)
 is also known aa the hazard rate. 

Next, we note the derivative of S(t) for continuous by a small change in t is   

𝑑𝑆(𝑡)

𝑑𝑡
= 

𝑑(1−𝐹(𝑡)]

𝑑𝑡
 = –  

𝑑𝐹(𝑡)

𝑑𝑡
= – f(t). 

When change in the component of (13.1.7) that depends on small h=dt, is expressed in log term, 

so we have  

𝜆(𝑡) = − 
𝑑𝑙𝑜𝑔𝑆(𝑡)

𝑑𝑡
        (13.1.9) 

That is, the hazard function is equal to the change in the log-survivor function. By 

exponentiating (13.1.9), the right-hand side becomes S(t); we further obtain 

𝑆(𝑡) = 𝑒−∫ 𝜆(𝑠)𝑑𝑡
𝑡
0         (13.1.10) 

Next, we note for t in (0, t), the boundary for S(0)=1, namely no exit during t=0 for sure. By 

using  (13.1.2) as F(t)=1-S(t), , we can integrate to obtain 

𝐹(𝑡) = 1 − exp [−∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
] , 𝑡 ≥ 0        (13.1.11) 

Finally, differentiating (13.1.11) leads to the density of T given by 

𝑓(𝑡) = 𝜆(𝑡) exp [−∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
] , 𝑡 ≥ 0        (13.1.12) 

We finally note another function related to the hazard function known as the cumulative hazard 

function and defined by the term inside the exp [.] in (13.1.12): 
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Ʌ(𝑡) = −∫ 𝜆(𝑠)𝑑𝑠 = −𝑙𝑛 𝑆(𝑡)
𝑡

0
       (13.1.13) 

The cumulative hazard function provides an alternative to the hazard function because it can be 

more precisely estimated than the hazard function.   

The relationship between the survivor and hazard functions allows examining how the 

distribution of T affects the probability of survival by the specification of the hazard function 𝜆(𝑡). 

Therefore, the next question is choosing suitable functional form for the distribution of T. Before 

addressing that question, however, we must point out another complication common in duration 

analysis, namely, that the data are subject to different types of censoring. 

13.2 Censoring  

The discussion of survival data here is confined to single-spell data. That is, if the individual re-

enters unemployment again after transition from a period of unemployment to employment status 

in the interval [0, a], the sample disregards that data on re-entry. Moreover, we examine here two 

types of duration data, time-invariant & time-varying covariates; the former is easier to deal with, 

while the latter, more complicated, is often employed with discrete time data. We first examine 

single-spell time-invariant data.  Duration data may be right-censored from above, or left-censored 

from below, or interval-censored. For right-censored data, we observe spells from time 0 until a 

censoring time c; some spells are completed by the time c, while for other spells all we know if 

that they will end at some time in the interval (c, ∞). For left-censored data, spells are known to 

end at some time in the interval (c, 0) but the exact time is unknown, as with the data for the 

classical Tobit model. Interval-censored data are only observed for the compomitting sleted spell 

length in interval form [t1, t2); “)” indicates open-ended, top side. 

The right-censoring arises when flow sampling. This kind of sampling, individuals enter the 

sample sometimes during [0, a], we record their covariates at the time of entry, and the period of 

time each remain in the initial state before transition. An example is a random sample of women 

unemployed at any time during 2020 with individual records on last jobs, number of children under 

five, years of education, etc. at the start of the unemployment spell. Right-censoring is a common 

feature of flow data because, after a certain amount of time, the sample stops tracking the subjects. 

The only known duration data for those still in the initial state is that the duration lasted as long as 

the tracking period. For example, if the sample weekly data duration was for a six-month period 
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and stopped tracking unemployed women after 26 weeks, then we would have right-censoring at 

week 26 for those who still remained unemployed at that week. Tracking can also be based on a 

fixed calendar date, such as the last week of June 2020 in which case, right-censoring differs across 

women in the sample because they would have become unemployed any time during January-June 

2020. With Stock sampling, by contrast, the data have also a left-censoring problem. Rather than 

observe a random sample of people flowing into the initial state, stock data during a specific 

interval [0, a] records a random sample of individuals at the initial state at time a, that is, at least 

some of the starting times, aj, are not observed, therefore, are left-censored. Left-censoring causes 

sample-selection bias because the sample data excludes individuals with longer initial spell than 

the sample tracking period and it is not permissible to assume missing observations are random. 

However, since flow data are the most common duration data, and right-censoring can only occur 

with flow data and are the usual kind employed in economics, we focus on this type of duration 

data.      

More generally, if duration is not censored, the density of ti=ti
*, given (xi, ai, ci), is f(t|xi; 𝜃). 

Therefore, the probability that ti is censored is 

P(ti
*  ci|xi)=1 – F(ci| xi; 𝜃) 

where ti is the observed duration time for individual i, ti
*is the time spent in the initial state, ci is 

the censoring time, ai in the interval [0, b] for b as the length of the interval, is the starting point 

of entry into the initial state, and F(t|xi; 𝜃) is the conditional cdf of ti
* given xi. Let di be a censoring 

indicator (di=1 if uncensored, di=0 if censored); the conditional likelihood for observation i can be 

written as  

f(t|xi; 𝜃)di[ 1 – F(ci| xi; 𝜃)](1-di)      (13.2.1) 

Note that the length of the interval b plays no role in the analysis because the true duration is 

assumed to be independent from ai, therefore, make it also irrelevant to the analysis. Given a 

random sample of size N, the maximum likelihood estimator for 𝜃 is obtained by maximizing 

∑ {𝑑𝑖 [𝑓(𝑡𝑖|xi;  𝜃)𝑑𝑖)] + (1 − 𝑑𝑖)log[ 1 –  𝐹(𝑡𝑖| xi;  𝜃)]}𝑁
𝑖=2     (13.2.2) 

If there is no censoring, di=1, the second term in (13.2.2) is dropped.  
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 The survival models have typically focused on right-censoring from above, but even that 

leaves a variety of censoring encountered when modeling duration data. Random censoring is 

when an individual observation has completed duration T* and censoring time c* that are 

independent of each other, namely, individuals randomly dropping out of the study. Type I 

censoring occurs from above with a certain fixed and known censoring time. This is a special case 

of random sampling with c*=Tc . The standard survival analysis with censoring is valid only if the 

censoring mechanism is independent or a noninformative censoring type. This means the 

parameters of the censoring distribution are not informative about the parameters of the duration 

distribution. Then we may treat the censoring indicator as exogenous. Given censored data (t, 𝛿), 

the probability of the uncensored observations is 

P[T=t, 𝛿 =1]= P[T = t | 𝛿 =1] x P[𝛿 =1] ; 

With independent censoring, we have P[T=t, 𝛿 =1]= P[T=t], and if the censoring is 

noninformative, P[𝛿 =1] can be dropped from the likelihood function since it contains no 

parameter of the duration distribution. Similarly, for censored observations  

P[T=t, 𝛿 =0]= P[T ≥ t | 𝛿 =0] x P[𝛿 =0] 

With P[T=t, 𝛿 =0]= P[T ≥ t ] under independent censoring,  P[𝛿 =0] is disregarded under 

noninformative censoring. The combination of the two reduces the density to P[T=t] when 𝛿 =1, 

and to P[T ≥ t when𝛿 =0. It is possible to allow for T and C to vary with the same regressors; what 

matters is that the C parameters are not informative about the T parameters. With Type II censoring, 

only the p shortest spells are completely observed. For example, a clinical vaccine trail may end 

after p infected patients experience deteriorating conditions. In economics, random censoring from 

above is the usual type of duration data, so censoring differs randomly for different individuals.  

13.3 Specification of the Hazard Function   

The shape of the hazard function is a central issue in survival analysis; there are several 

distributions employed for that purpose and the choice among them largely depends on the features 

of the data and the type of research questions addressed. However, the two main distributions most 

frequently employed, which also provide a benchmark for comparison with all other hazard 

distributions, are the exponential duration distribution and the Weibull distribution. We focus 

on these two distributions because they are the two most frequently employed in the econometrics 
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of duration data.  The exponential distribution is the simplest because its parameter is constant, 

that is 

𝜆(𝑡) = 𝜆 , for all   𝑡 ≥ 𝑜       (13.3.1) 

(13.3.1) makes the hazard function memoryless; the probability of exit in the duration period does 

not depend on how much time has been spent in the initial state. Therefore, (13.1.10) becomes 

S(t)=𝑒𝑥 𝑝 (−∫ 𝜆(𝑡)𝑑𝑡
𝑡

0
) = 𝑒𝑥𝑝(−𝜆(𝑡)); since the cdf (13.1.11) is written as F(t)=1− 𝜆(𝑡).   

The exponential function is a one-parameter distribution, and that makes it too restrictive 

in many applications. A more flexible alternative based on the generalization of the exponential 

distribution commonly employed for duration analysis is the Weibull distribution. When the 

hazard function is not constant, the process displays duration dependence; with positive duration 

dependence,  
𝑑𝜆

𝑑𝑡
> 0, the probability of exiting the initial state increases the longer one is in the 

initial state, for example, long-run unemployed more likely to be employed. With a negative 

derivative and reverse exit probability, we have negative duration dependence.   

If T has a Weibull distribution, its cdf is presented by F(t)=1− 𝑒𝑥𝑝(−𝛾𝑡𝛼); its density is 

given by 𝑓(𝑡) = 𝛾𝛼𝑡𝛼−1𝑒𝑥𝑝(−𝛾𝑡𝛼), and its hazard function, by (13.1.10) and (13.1.12), is  

𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= 𝛾𝛼𝑡𝛼−1       (13.3.2) 

 The values of the nonnegative parameters 𝜸 and α determine the exact shape of the Weibull 

distribution. The Weibull distribution reduces to the exponential distribution as its special case 

when α=1, demonstrating the Weibull as a more flexible generalization of the exponential. If α>1, 

the hazard is monotonically increasing, so it displays positive duration dependence everywhere; if 

α<1, the hazard is monotonically decreasing. If we know the hazard to be increasing or decreasing, 

then the Weibull distribution is suitable for capturing duration dependence. Table 13.1 shows the 

survivor and hazard functions for exponential and Weibull distributions. 

  

Table 13.1 Distributional features of Exponential and Weibull functions 
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As an example, Figure 13.1 shows the distributional shapes for a family of different Weibull 

distribution functions for the particular values of α=1.5 and 𝜸 = 0.01.  

Figure 13.1-Weibull Distribution 

 

13.4 Estimation 

We consider fully parametric estimation with independent or noninformative censoring by ML or 

OLS. Moreover, since the duration distributions we employ are parametric, we discuss only the 

continuous duration estimation with the regressors assumed to be time-invariant as this is the more 

standard type of duration data. Then Estimation with time-variable regressors is briefly examined 

later. Estimation of duration models is complicated by the presence of censoring as the observed t 

is the length of a possible incomplete spell; therefore, we augment the data by the introduction of 

a variable indicating the presence of right-censored observations, that is, we know only that the 

duration exceeded t. The contribution of uncensored observations to the likelihood function is 

given as 𝐹(𝑡|x, 𝜃). The probability distribution of T, in general terms with its particular distribution 

left unspecified, and an error term 𝚞; plus θ (q x 1) vector of parameter and x vector of  regressors 

varying across subjects, is given by:  



 203 

𝑃[𝑇 > 𝑡] = ∫ 𝑓(
∞

𝑡

𝚞|x, 𝜃)𝑑𝚞 = 1 − 𝐹(𝑡|x, 𝜃) = 𝑆(𝑡|x, 𝜃) 

where S(.) is the survivor function with density for the ith observation given by 

𝑓(𝑡𝑖|xi, 𝜃)𝛿𝑖𝑆(𝑡𝑖|xi, 𝜃)1− 𝛿𝑖 for which we have introduced into the model a right-censoring 

indicator 𝛿𝑖= 1 if no censoring; 𝛿𝑖= 0 if right-censoring. Taking logs and summing up, we have 

the MLE 𝜃 obtained from maximization of the following log-likelihood 

ln L (𝜃) = ∑ [𝛿𝑖ln𝑓(𝑡𝑖|xi, 𝜃 ) + (1 − 𝛿𝑖)ln 𝑆(𝑡𝑖|xi, 𝜃 )𝑁
𝑖=1    (13.4.1) 

 The first term in (13.4.1) corresponds to the completed spells, and the second term to right-

censored spells, where we also assume independence over i observations. The application of 

(13.4.1) to duration data produces asymptotically consistent estimates if the density is correctly 

specified. If the density is incorrectly specified, then (13.4.1) estimation will in general be 

inconsistent with the exception of the exponential duration and in the absence of censoring, since 

the exponential function only requires correct specification of the conditional mean. With 

censoring, even the exponential distribution is inconsistent. Also note that many economic 

duration data have interval-censoring, so the data are often known to lie in an interval. For 

example, unemployment durations may be grouped in weeks or months, yet the parametric model 

applied has a continuous distribution, such as the exponential or the Weibull. In practice, it is 

common to assume the effect of interval-censoring is sufficiently minor to be disregarded. For 

example, a person unemployed for two months who becomes employed in the third month is 

assumed to have had an unemployed spell of exactly three months rather than a spell in the range 

of two to three months. 

 For application, we need to specify a hazard function for (13.4.1). The hazard function 

(13.3.2) for the Weibull distribution is  𝝀(𝑡) = 𝛾𝛼𝑡𝛼−1 where 𝛾 >0 and α>0. The regressors can 

be introduced in different ways, but the most common specification is to let 𝛾 = 𝑒𝑥𝑝(𝑥′𝛽) that 

ensures 𝛾 >0 while 𝛾 does not vary with the regressors. Then the uncensored contribution to the 

log LM function (see table 3.1, 1st row) 

ln 𝑓(𝑡|𝑥, 𝛽, 𝛼) = ln [exp(x′𝛽)𝛼𝑡𝛼−1 exp(−exp(x′𝛽) 𝑡𝛼) 

= 𝑥′𝛽 + ln𝛼 + (𝛼 − 1)ln𝑡 − exp (x′𝛽)𝑡𝛼 ,  
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and for the Weibull survivor function (see table 13.1, 3rd row), we have 

ln 𝑆(𝑡|𝑥, 𝛽, 𝛼) = ln [exp(−exp(x′𝛽) 𝑡𝛼) = − exp(x′𝛽) 𝑡𝛼  

With the above specification, (13.4.1) for the Weibull distribution becomes 

ln L = ∑ [𝛿𝑖{xi
′𝛽 + ln 𝛼 + (𝛼 − 1)ln𝑡𝑖 exp(𝑥𝑖

′𝛽)𝑡𝑖
𝛼} − (1 − 𝛿𝑖) exp(x′β) 𝑡𝑖

𝛼]𝑁
𝑖=1  (13.4.2) 

The differentiation of (13.4.2) with respect to 𝛽 and α leads to the first-order conditions that solve 

for their estimates. The interpretation of the parameter estimates of the duration models usually 

focuses on the hazard rate 𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡) 
  = 𝛾𝛼𝑡𝛼−1, how it changes over time, with changes in the 

distribution function, and with a method selecting between the two competing models. For changes 

in regressors 

𝑑𝜆(𝑡)

𝑑x
= exp(x′𝛽)𝛼𝑡𝛼−1𝛽 = 𝜆(𝑡)𝛽       (13.4.3) 

showing that changes in regressors have a multiplicative effect on the hazard function. A positive 

𝛽𝑖 implies an increase in the hazard rate as a regressor in x increases, that is if  𝛽𝑖 > 0, an increase 

in xi leads to a rise in the hazard of failure and hence a decrease in the expected duration. Fully 

parametric estimation can also be obtained by least squares. In practice, this method must still have 

correct specification of the density and yet is less efficient than the MLE.  

 

13.5 Two Important parametric Duration Models 

Duration models are estimated with two formulations. Both the exponential and Weibull 

distributions are applicable in either of the two formulations, but some duration data must be 

conducted by density and hazard distributions such as the log-normal that are only applicable in 

one formulation. Although we cover only the two principal duration models that are most 

frequently employed distributions in econometrics, it is helpful to work with data using both 

formulations. 

 In a proportional hazard (PH) model, the conditional hazard rate can be analyzed as the 

product of two separate functions: 

𝜆(𝑡|𝐱) = 𝜆0(𝑡, 𝛼) φ(xβ)        (13.5.1) 
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where 𝜆0(𝑡, 𝛼), a function of t alone, is called the baseline hazard, while φ(xβ) is a function of x 

alone, and usually φ(xβ)=exp(x’β). All hazard functions of form (13.5.1) are proportional to the 

baseline hazard with a scaling factor φ(xβ) that is not an explicit function of t. The PH model is 

the most widely used in setting up a duration model regression analysis because then the model 

has the advantage of providing consistent estimate of regression parameter vector β without 

specification of the functional form for 𝜆0 by employing non-parametric methods. Both the 

exponential distribution and the Weibull distribution are PH models since their hazards are, 

respectively, exp(x’ β) and exp(x’ β)𝛼𝑡𝛼−1(see below for an empirical example); note that the 

Weibull has only one baseline hazard parameter, though there may be other Weibull models with 

more parameters to estimate. Finally, we note that since the baseline is scaled by the vector of 

covariates, if all covariates are zero, then 𝜆0(𝑡, 𝛼)β0 where β0 the intercept constant becomes a part 

of the baseline.  

The other alternative duration formulation arises by modeling duration in ln t rather than t, thus 

the regression model specification is 

ln t= x’β+ 𝚞         (13.5.2) 

Therefore, this alternative formulation has an explicit stochastic error term 𝚞 , with density f (.); 

the distributional form of f (.) determines the regression model; for example, with f (.) as the normal 

density, we obtain the log-normal hazard. This alternative formulation of duration is known as the 

accelerated failure time (AFT) model; different distributions for 𝚞 lead to different AFT models. 

Exponentiating (13.5.2), we have the survival models in AFT metric with its t as  

t=exp(x’β).𝑣 ;  𝑣 = e𝚞 

In the AFT metric,  𝜆(𝑡|x) = 𝜆0(𝑣) φ(xβ) is the hazard rate, with 𝜆0(𝑣) as its baseline hazard that 

does not dependent on t. Substituting 𝑣= t.exp(- x’β) leads to the AFT hazard as 

𝜆(𝑡|x) = 𝜆0(𝑡. 𝑒𝑥𝑝(−x’𝛽)) φ(xβ)       (13.5.3) 

 (13.5.3) is an acceleration of the baseline hazard 𝜆0(𝑡) if 𝑒𝑥𝑝(−x’𝛽) > 1, and deceleration 

if 𝑒𝑥𝑝(−x’𝛽) < 1. The Weibull and exponential hazard are the only models in being of both PH 
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and AFT forms. Setting f (.) to the extreme-value density16 results in the exponential and the 

Weibull regression models. The effect of the AFT model is to change the time scale by 

t=exp(x’β)𝑒  𝚞, depending on whether this exp(x’β)>1, or exp(x’β)<1; time is either accelerated or 

decelerated (degraded). Then a subject with covariates xi would have a probability of survival S(t) 

past time t that is evaluated at the point exp(- xi 𝛃)t. Therefore, the AFT does not imply a positive 

acceleration of time with the increase of a covariate but a deceleration of time, that is, (time scale) 

increases in the expected waiting time for failure. Why employ a duration model based on the 

AFT? Because not all duration processes can be analyzed by the exponential or Weibull PH 

models; some, like the log-normal, can be formulated as an AFT model only, while others, like the 

generalized Weibull, by the PH model alone. However, the exponential and the Weibull 

distributions are the only two duration functions that can be applied in both the PH and the AFT 

formulations.  

13.6 Semi-parametric Cox function 

Fully parametric models produce inconsistent estimates if any part of the parametric model is 

misspecified. In such cases, the proportional hazard (PH) models are known to provide consistent 

estimate of regression parameter vector by non-semiparametric methods without specification of 

the functional form for 𝜆0. We employ a PH Cox semi-parametric survival function that does not 

require estimating the base hazard at the same time. The Cox model is semi-parametric in that the 

hazard rate  𝜆0  drops out of the estimation of β as a consequence of the PH assumption, though 

𝜆0 estimate can be recovered, once β is estimated. Hence, the Cox model with the exponential 

covariant specification leaves 𝜆0 in (13.1.8) unspecified, now denoted as ℎ𝑜(𝑡) 

𝜆(𝑡|𝐱) = 𝜆0 (𝑡) exp(xβ)        (13.6.1) 

The Cox proportional hazards regression model states that the survival function for the ith person 

in the data is estimated by: , a vector of unknown parameters to be estimated from the data 

 
16 Extreme-value distributions are the limiting distributions for the minimum or the maximum of a very 

large collection of random observations from the same arbitrary distribution. For example, the normal 

density function with μ=0 and β=1reduces to the (minimized) distribution 𝑒𝑥𝑒−𝑒𝑥
.  
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𝜆0(t) = baseline hazard function at time t, that is hazard function when all predictors are equal to 

zero; x = independent vector of predictor variables. 

 Given (13.6.1), consider the probability of a spell of unemployment for example ending at 

ti for an individual i. The survivor function is then the conditional probability of ending the spell 

for i divided by the conditional probability of any individual spell inding at ti; the latter being the 

sum of the conditional probability i individual. Then 

P[ti]=
𝜆𝑖(𝑡𝑖 |𝑥𝑖 ,𝛽)

∑𝜆𝑙(𝑡𝑖 |𝑥𝑙 ,𝛽)
=

∅(𝑥𝑖 ,𝛽)

∑∅(𝑥𝑙 ,𝛽)
 

where 𝜆 drops from the last ratio beause of the model’s PH assumption. This is broadly the same 

strategy employed by other semi-parametric methods examined in chapter 11 except that those 

remove the non-parametric component by differencing rather than division; and just like the 

models in chapter 11, the non-parametric component of the baseline hazard can be recovered 

once we obtain the slope estimates �̂�.  

 Note that the effect of the base hazard function is unspecified and removed semi-

parametrically from the regression equation based only on the individual covariates. That may still 

leave unaccounted the direct recession effects on the covariates. If there are doubts regarding the 

presence of such direct effects on the covariates, we can also move a covariate of interest inside 

the hazard function, then re-estimate the model17separately in terms of that covariate; tha is, the 

covariate in question has a similar scaling effect on all the other individual corariates.   

13.7 Unobserved Heterogeneity 

We sometimes wish to test for duration conditional on both observed covariates and unobserved 

individual heterogeneity; in biostatistics, the unobserved heterogeneity is called frailty, for 

example, probability of death conditional on surviving up to t for a patient with a given frailty. 

The expansion of the above models for unobserved heterogeneity requires the following 

assumptions: a. the heterogeneity is independent of the observed covariates, starting and censoring 

times (strong assumption), b. the distribution of heterogeneity variable is known; c. the 

heterogeneity enters the hazard function multiplicatively.  A survival model with an explicit 

 
17 This can be done in Stata by using the ancillary code for the covariate suspected of being directly affected 

by the base.  
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heterogeneity introduced into a hazard function is called a mixture model. A Weibull hazard 

function conditional on observed covariates xi and unobserved heterogeneity 𝒗𝒊 is  

𝜆(𝑡|𝑥𝑖, 𝑣𝑖) =  𝑣𝑖𝑒𝑥𝑝(𝑥𝑖𝛽)𝛼𝑡𝛼−1      (13.7.1) 

where 𝑥𝑖1≡1 for the intercept, and 𝑣𝑖 > 0 enters (13.7.1) multiplicatively; the identification of 

𝛽 & 𝛼 requires conditioning on normalization for the distribution of frailty 𝑣𝑖, usually 𝐸(𝑣𝑖)=1. 

This implies the average hazard, given a vector x, is 𝑒𝑥𝑝(𝑥𝑖𝛽)𝛼𝑡𝛼−1. Many applications adopt a 

gamma-distributed heterogeneity, 𝑣𝑖~ gamma (δ, δ), with 𝐸(𝑣𝑖)=1 and Var=1/δ. More 

generally, suppose the hazard function is  𝜆(𝑡|𝑥𝑖, 𝑣𝑖) =  𝑣𝑖𝑘(𝑡; 𝑥𝑖) & 𝑘(𝑡; 𝑥𝑖)>0 ; for simplicity, 

we disregard the dependence of 𝑘(. ; . ) on parameters, and assume the density of 𝑣𝑖 is continuous. 

We can then re-write (13.1.11) for the cdf with heterogeneity as 

𝐹(𝑡|𝑥𝑖 , 𝑣𝑖) = 1 − exp [−𝑣𝑖 ∫ 𝑘(𝑠; 𝑥𝑖)𝑑𝑠
𝑡

0
]     (13.7.2) 

The density of 𝑣𝑖 is h(𝝼)= 𝝳𝝳 𝝼𝝳 -1exp(-𝝳𝝼)/𝝘(𝝳), Var(𝑣𝑖)=1/𝝳 and 𝝘(.) is the gamma function. Let 

𝞷i ≡ ξ𝑖(𝑡; 𝑥𝑖) = ∫ 𝑘(𝑠; 𝑥𝑖)𝑑𝑠
𝑡

0
 and because the gamma (δ, δ+𝞷i) density must integrate to unity, it 

can be shown its cdf to be  

G(t|𝑥𝑖) = 1 − [1 + 𝜉(𝑡; 𝑥𝑖)/𝝳 ]-𝝳     (13.7.3) 

The derivative of (13.7.3) with respect to t, given that 𝑘(𝑡; 𝑥𝑖) is the derivative of 𝞷i ; results in the 

density of t conditional on 𝑥𝑖 as 

g(t|𝑥𝑖) = 𝑘(𝑡; 𝑥𝑖). [1 + 𝜉(𝑡; 𝑥𝑖)/𝝳 ]-𝝳-1    (`13.7.4) 

(13.7.4) is called unconditional hazard because it is not conditioned on the unobserved 

heterogeneity any more. When the hazard function has the Weibull distribution, ξ𝑖 (𝑡; 𝑥𝑖) =

𝑒𝑥𝑝(x𝛽)𝑡𝛼, the result is called the Burr distribution and its hazard, namely the unconditional 

hazard function when the conditional hazard is Weibull and heterogeneity has a gamma 

distribution, is 

𝜆(𝑡|𝑥𝑖 , 𝑣𝑖) =  𝑒𝑥𝑝(x𝛽)𝛼𝑡𝛼−1[1 +
𝑒𝑥𝑝(x𝛽)𝑡𝛼

𝛿
]−1 

Now reparametrize the Burr distribution with 𝝶=1/ 𝛿, known as precision parameter, as 
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𝜆(𝑡|𝑥𝑖, 𝑣𝑖) =  𝑒𝑥𝑝(x𝛽)𝛼𝑡𝛼−1/[1 +  𝜂. 𝑒𝑥𝑝(x𝛽)𝑡𝛼]     (13.7.5) 

If 𝜂=0, that is Var(𝑣𝑖)=0, the result is the Weibull hazard but if 𝜂=1, that is Var(𝑣𝑖)= E (𝑣𝑖), then 

(13.7.5) can be shown to lead to the log-logistic hazard.  

The main interest in a hazard model focuses on testing for the dependence of duration on 

heterogeneity, but a more careful look at (13.7.1) suggests that the assumption of independence of 

heterogeneity from observable covariates with only a single cycle data for each individual, is a 

strong assumption. In practice it may be hard to distinguish between duration dependence 

parameter α and heterogeneity 𝝼: once the T distribution is estimated conditional on x, we cannot 

uncover the distribution given (x, 𝝼) without extra assumptions (with more than one cycle for each 

individual, then unobservable heterogeneity will be present in all cycles, hence allowing us to 

isolate the effect of flexibility parameter α on the duration function). An interesting hypothesis to 

test in this context if H0 : α=1; if confirmed, the test can remove the effects of flexibility and isolate 

that of heterogeneity on the duration function. However, when the hazard has the PH form, then it 

is possible to identify  𝒌(. ) and the baseline hazard. Moreover, if research interest is on how 

covariates affect the mean duration, then modeling heterogeneity is not critical since its addition 

changes the error distribution but not the mean effects.  

13.8 Time-Varying regressors  

The standard duration models have regressors that change across individual observation units but 

not over time. However, some duration data have individual units that are observed at several 

stages during a spell, and the relevant regressors may take different values over the spell. For 

example, in a survival medical study, the dosage levels may vary over time for the same 

individuals, or unemployment benefits may change during an unemployment spell. Time-varying 

covariates pose two kinds of problems for duration model estimation. First, the misspecification 

that results from treating a time-varying covariate as a fixed variable. Second, a time-varying 

covariate may have feedback effects, for example, duration of unemployment may depend on job 

search but the search level may fall the longer is the duration, or the medical dosage may change 

in response to the patient’s improving conditions. Then the regressors may not be strictly 

exogenous. However, the standard duration analysis deals with only the first problem by assuming 

the covariates are strictly exogenous. To define this concept, let x(t +h)  denote the covariate path 
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from t  to t+h , then strict exogeneity for the conditional hazard function at time t  requires that for 

each t, x(t+h) remains constant for all small changes h to t. As a result, the probability distribution 

for the hazard function with strict exogeneity is defined as 

𝑃[x(𝑡, 𝑡 + ℎ)|𝑇 ≥ 𝑡 + ℎ, x(𝑡)] = 𝑃[x(𝑡, 𝑡 + ℎ)|x(𝑡)] 

That is, the probability depends not on the distribution of t, but only on x(t).  

The strict exogeneity is important when duration data are discrete. The usual grouped 

duration data in economics, given in monthly or weekly, provide information only on individuals 

falling into the time-intervals of the data. An application of survival analysis to grouped data 

summarizes the information in a sequence of binary outcomes; producing in effect a panel data set 

where each cross-section observation is a vector of binary responses plus covariates. The 

advantages of this approach are: first, ease of estimating flexible hazard functions with a PH 

specification; second, ease of introducing observable time-varying covariates due to the sequential 

nature of the data.  To simplify, we assume flow sampling data to exclude sample-selectivity bias 

with stock sampling data, and divide the time into M+1 intervals: [0, a1), [0, a2), . . .,  [aM-1, aM), 

[aM, ∞), where am are known constants, for example, a1=1, a2=2, etc.; and any duration falling into 

the last interval, [aM, ∞), is censored, hence no observed durations are longer than aM . Let dm be a 

binary variable equal to one if the duration is censored in interval m; zero otherwise; similarly, ym 

is a binary indicator equal to one if the duration ends in the mth interval; zero otherwise. Now 

allow individuals enter the initial state at different calendar times. Since starting time is 

unimportant with flow data, we assume starting times are independent of any covariate and 

unobserved heterogeneity. For each person i, we observe (yi1, di1), . . .,(yiM, diM) which is a balanced 

panel data set as a string of binary indicators that must be a string of zeros followed by a string of 

ones for any individual.    

If di is a censoring indicator equal to one if duration i is uncensored, the log likelihood for 

observation i over (m-1) discrete periods is  

∑ log [𝛼ℎ(xi
𝑚𝑖−1
ℎ=1 , 𝜃)] + 𝑑𝑖 log [1 − 𝛼𝑚𝑖

(xi, 𝜃)]      (13.8.1) 

Summing up (13.8.1) over i=1, . . ., N leads to the log-likelihood for the entire sample. The 

application of (13.8.1) requires an specification for the hazard function and because of its 

flexibility, a piecewise-constant proportional hazard is popular: for m=1, . . . , M, 
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𝜆(𝑡|x, 𝜃) = 𝑘(x𝛽)𝜆𝑚  am-1 ≤1<am     (13.8.2) 

 Where 𝑘(x𝛽)>0 and usually specified by 𝑒𝑥𝑝(x𝛽), allowing different constant hazard over each 

time interval, though the hazard over [aM, ∞) cannot be estimated. Hence, we have 

𝛼𝑚(xi, 𝜃) ≡ 𝑒𝑥𝑝 [−𝑒𝑥𝑝(x𝛽)𝜆𝑚(𝛼𝑚−𝛼𝑚−1)
]      (13.8.3) 

where the am are constant, not parameters; usually am=m. Therefore, the duration distribution is 

discontinuous at the endpoints. We can also add unobserved heterogeneity to hazards specified 

with grouped data, although the assumptions stated above play an even more critical role for such 

applications.  

We note one further issue not discussed above. We confined the discussion to fully 

parametric regression models. It is also possible to estimate the parameters in a PH model 

nonparametrically without specifying the baseline hazard, and that provides more flexibility by 

avoiding arbitrary imposition of a particular function form on the data for the hazard function in 

advance of the investigation. Such nonparametric models are inapplicable when covariates are not 

strictly exogenous. In any case, this issue must rely on additional duration model distributions 

besides the two main distributions examined above. 

13.9 Competing Risks Model 

Competing risk is a class of survival models designed to multiple transitional exit destinations. A 

type of cancer treatment can have exit destinations of cleared or relapsed, see the end of chapter 

exercise; McCall (1996) developed a model in which workers could be reemployed either in full-

time or part-time jobs, and for each outcome the considered factors were allowed to have varying 

effects.  

We expand the above models to account for the probability survival when there are more 

than one exit destinations, for instance, moving from unemployment to either full-time or part-

time employment. A survival function with this type of multivariant transitional probabilities will 

involve estimating a joint distribution of durations. The competing risk model (CRM) estimates 

a multiple hazards version of the single-spell model where each exit destination provides one 

complete duration m, and m -1 censored durations, thus competing risks determine the destination 

state. We denote destination-specific covariates by x𝑗(𝑗 = 1,2, . . . , 𝑚), and only one duration, the 
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shortest, is observed at the end of the spell τ=min_j  (𝑡𝑗), 𝑡𝑗>0. If the risks are independent, then the 

multiple-spell survival function is 

𝑆𝜏(𝑡)=Pr[τ > t]= Pr[𝑡1 > t]* Pr[𝑡2 > t]* . . . *Pr[𝑡𝑚 > t]. 

Let 𝑔𝑗(𝑡)𝑑𝑡 be the probability of risk j materializing over a small interval change by dt, then the 

total hazard rate of all durations is 𝜆𝜏(𝑡)≡-d/dt ln 𝑆𝜏(𝑡)=∑ 𝑔𝑗(𝑡)
𝑚
𝑗=1 . That is, the probability of exit 

remains the same regardless of j being one of the risks or the only risk.  

Given hazard functions independence, the PH Cox duration model provides probability estimates 

for the integrated hazard over different destinations by a PH model of the form  

𝜆𝑗(𝑡; 𝐱) = 𝜆0𝑗(𝑡) exp[(x’(𝑡)𝛽𝑗], j=1, . . . , m      (13.9.1) 

where both the base hazard and parameter are specific to j-type hazard 𝑡𝑗1 < . . . < 𝑡𝑗𝑘𝑗
;  

𝑘𝑗denotes the ordered destination of type j. For instance, with m=2, 𝑘1=full-time work and 

𝑘2=part-time work.  

13.10 Examples 

Example 1: Duration of Unemployment: Data from McCall (1996) Displaced Workers 

Supplements (DWS) for 1986, 88, 90, & 92; application requires information on part or full-time 

status of the first post-displacement job. Unemployment durations have been measured in two-

week intervals and four binary censors are employed to indicate the status of the first post-

displacement job, here CENSOR 1 is used, meaning a spell is complete if person is re-employed 

at a full-time job. UI is an indicator for the person filling an unemployment claim, RR=the ratio of 

weekly benefit to weekly earnings in the job lost, and disregard is the threshold earnable amount 

in a part-time job without losing unemployment benefits and its rate (DR)is the ratio of the amount 

to weekly earnings in the lost job.  

Consider two parametric regression models in table 13.2 The formulation is the PH, though the 

outcome is also interpretable as an AFT. The Weibull model provides the best fit, with positive 

state dependence (α=1.129), meaning the probability of the spell terminating increases the longer 

the spell lasts. UI is negative in both models, implying that the joblessness of those who claim 
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unemployment insurance terminates more slowly. LOGWAGE is positive in both models with little 

variation across models.  

Table 13.3 shows the estimates for the exponentiated coefficients corresponding to those 

in table 13.2. The UI hazard ratio is 0.241, meaning claiming unemployment insurance decreases 

the hazard by nearly 76% =[(1-0.241)*100] over the baseline hazard. Similarly, for the Weibull 

function, the Hazard decreases by about 78%. Here the results from both models are similar, the 

relatively few variables that are significant, indicate large unexplained variation, possibly caused 

by unobservable heterogeneity.  

Table 13.2 Exponential & Weibull Coefficient Estimates of Unemployment Distributions 

 

 

Table 13.3 Exponential & Weibull Hazard Ratios of Unemployment Distributions 

 

Example 2: Duration of Strikes 

Kennan (1985, J of Econometrics) examined the duration of official (contract) strikes in the US 

manufacturing industries. The study employs functional forms for hazard and unobserved 

heterogeneity that fall outside those examined above; the brief discussion included here is 

intended to show the range of topics analyzed in labor economics with the application of survival 

models. Kennan specifies a logit hazard function and a beta function for unobserved 

heterogeneity variable conditional on a parameter 𝛼 that determines its precise distribution; 

absence of heterogeneity is indicated by 𝛼=0. The beta-logit duration model is applied to the 

BLS from US department of labor to the age of strikes in days relation to monthly industrial 

production in order to test the prevailing view that strikes are procyclical.  
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The author suggests an alternative hypothesis that duration of strikes is a function of the 

cost of strikes to both firms and workers, predicting that when production is near its peak, the 

cost of strike (to both parties) is relatively high, so the number of strikes should be reduced; the 

strikes, conditional on the age of strikes, should be countercyclically affected by business cycle 

fluctuations. The vector of explanatory variables for a strike i after s days is 

Xi (s)=(1 s s2 s3 . . . sm Zi )  

where m is the order of the polynomial in the age of the strikes, namely, linear, quadratic, etc., 

and Zi denotes the value of industrial production in the month when strike i began. 

Table 13.4 shows the main ML estimates of the study comparing the models without 

heterogeneity (logit hazard, first two columns) and with heterogeneity (logit-beta hazard, third-to 

fifth columns); both estimated with a ninth-order polynomial of s. Note that production 

positively affects strikes hazard function. Moreover,  is close to zero and insignificant for the 

logit-beta model, suggesting the simple logic model captures the main feature of the hazard 

function of this study. The key empirical result, however, is the consistently negative effects of 

the age of strikes on hazard function, that is strikes are counter-cyclically related by the business 

cycle fluctuations. 

Table 13.4 Hazard function for duration of Strikes 
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Readings 

For textbook discussion, see Cameron and Trivedi (2005, chapters 17, 18 and 19), Wooldridge 

(2010, chapter 22). McCall (1996) and Kenan (1985) are well-known applications.  
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Chapter 13 Duration Models Exercises 

 

Q13.1 Downloads kva.dta, the data are about the ability of a new type of generators to stand 

overload 

a. Fit a Weibull model with exponential Coefficients (Hazard ratios) in PH metric, and Obtain un-

exponentiated coefficients, and also fit the model in corresponding AFT metric; and use p to 

convert previous un-exponentiated coefficients to AFT metric   

Q13.2 Download mfail3.dta, more complicated patient survival data that have repeated 

occurrences 

a. describe data, fit Weibull, interpret estimates, fit exponential, compare models; why use robust 

standard errors; are the standard errors noninformative? 

. Q13.3 Download cancer.dta, patient survival data in drug trial for model selection, use LR or 

Wald test if models are nested; if not use Akiake with the smallest AIC 

a. Fit Weibull, test if it differs from exponential, fit exponential for comparison 

Q13.4 Download hip3.dta data on hips fracture data set. 

a. Employ streg commands to allow explanatory variables to have hazard effects that depend on 

the model’s research question. The research question is based on the hazard (13.3.2) scaled by sex 

& protective device but hazard for both sexes have different shapes using (13.4.1), that is age and 

protect remain the same for both sexes but differently scaled for each sex (male).  

Q13.5 Download cancer.dta.  

a. Fit the model in Q13.3 with the coefficients constrained to be same across strata while allow 

intercept and ancillary to vary.  

Q13.6 Download cancer.dta. 

a. Sort the data by individual id, censor time and transition time, then estimate a Discrete 

Survival model with Unobserved Heterogeneity/Frailty by glm, defining the duration 

sequences in log terms.  
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b. Show the same results are obtained by the discrete Weibull hazard, using the pgmhaz 

command function.   

c. Compare the results in b. with those obtained from the Weibull function without 

unobserved heterogeneity, and those with the continuous Weibull. How different are the 

results?  

Q13.7 Download hypoxia.dta, the data set for 109 cervical cancer patients followed over 1994-

2000 by the time (in years) after treatment loss or relapse, the latter further divided into local if 

condition relapse was in pelvis, or distant if elsewhere.   

a. Fit a Competing Risks model for ifp as a function of tumsizxer & pelnodde, with local as the 

event of interest and distant as competing event. Obtain the coefficient estimates for this model. 
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Chapter 14 Long Panel Cointegration Test and VEC Estimation  

Introduction 

This chapter discusses two issues related to testing and estimating of cointegrated long panel data 

sets, both problems arise when we extend time-series analysis to a panel data context with a long 

time dimension. The long time series are important when we test for slow converging series that 

are in fact cointegrated but the week testing poor of the Dicky-Fuller or Johansen cannot correctly 

identify cointegrated stationarity, as discussed in chapter 8. Moreover, for panels of short time 

span, much of variation across observations are from time-invariate data units; therefore, by 

necessity we assumed slope homogengeity across time periods in static and dynamic pael data 

analysis of chapters 4 and 5. That assumption can no longer be plausibly maintained if panel time 

spane is long, and the problem of slope heterogeneity over time must be addressed to avoid 

inconsistent estimation. We examine Im, Pesaran and Smith (2003), the IPS unit-root cointegration 

test as a solution to the weak power of the DF and Johanen cointegration tests by exploiting 

additional variation available when combining cross-section, countries for example, and time-

series into a panel data set. For cointegration we must employ a more general multiple series testing 

procedure that can capture potential co-movement among panel data variables. We examine such 

a test in section 14.1 specifically formulated to relax I(0) verses I(1) of the DF and Johansen  tests 

and allows for cointegrated models that contain I(0) and I(1) in single-equation multiple panel 

series. Moreover, with long panel data sets, typically with T >N, we can estimate a separate 

equation for N units in each time period, but then the standard panel data estimators ignore the new 

estimation problem of slope heterogeneity. We can of course allow slope to change for each time 

period, but then estimation of a very large number of parameters would seriously lower the degrees 

of freedom and hence the esimatin accuracy. We discuss the more recent Mean Group and Pooled 

Mean Group estimators in section 14.2 that can estimate cointegrated ARDL models by imposing 

plausible parameter restrictions and yet allow and test for heterogeneity hypothesis.          

14.1 Unit Root Bounds Test for Cointegration 

ARDL provides the basis of a more powerful unit-root test by exploiting the greater variation of 

co-variables offered by the panel data structure in order to overcome the weak power of the 

residual-based and the Johansen test procedures. There are several problems with the Engel 

Granger residual-based approaches to test of cointegration stationarity. First, the test results can 
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change depending on the left-hand variable selected in the first step estimation of error correction. 

Second, it does not allow for more than one cointegrated relation. Furthermore, the test has low 

power. The co-integration stationary test developed by Johansen addresses the first two problems. 

However, low test power remains a problem. Since these tests apply to a I(1) spurious null 

hypothesis, they are based on the assumption that underlying regressors are I(1). With a low co-

integration test power, the true order of integration may well be unknown to the investigator, 

despite rejection of stationarity by the DF test, for eample, with very slow converging series. Lack 

of certainty regarding I(1) regressors in the model adds uncertainty as a new problem to the 

standard unit root tests. The Pesaran, Shin and Smith (2001) Bounds test addresses this problem 

and obtains co-integration test results on whether the model regressors are I(0) or I(1) when the 

the order of cointegration is unknown. The test employs an ADRL model that involves a number 

of steps discussed below.  

 Testing for cointegrated unit roots among several series would be clear if we knew: a) I(0), 

then apply OLS to the series in levels, b) all series are I(1), then apply the OLS to the VAR series 

defined in first differences, and c) all the series are integrated of the same order, and also 

cointegrated; apply ECM by the OLS if the test employed is based on the residual-based EC. That 

leaves the possibility that only some of the variables may be I(0) , and some I(1), even integrated 

but not in integers but only fractionally; in addition to other I(1) series. Based on an ADRL model, 

the bounds test is designed to provide an answer when it is unknown, whether the series are of the 

same order of integration and produces a test outcome that is robust to the possibility that the series 

may be cointegrated with different orders of integration of I (0) and I(1).  This method has some 

advantages over the standard methods of cointegration unit root tests. First, it can be applied to a 

combination of I(0) and I(1) series, second, it is conducted with just a single, equation-by-equation 

application, so it is simple to apply; finally, it allows different lag structures for different series 

because it generates asymmetries by weak exogeneity.       

The bounds test is developed from ARDL model and involves several steps. Start from the 

general ADRL (p, q) model with a serially independent error term: 

Yt=β0+ β1yt-1+…+ βpyt-p+αoxt+α1xt-1+…+αqxt-q+εt 

Summing over 1 to p for yt series and over 0 to q for xt series. Assume we test for stationarity 

among three time series of yt, X1t, and X2t. 
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Step 1:  Estimate the error correction model for the three series: 

The conventional ECM would be 

∆Yt=β0+ β1yt-+ 𝛾1∆x1t-1+𝛾2∆x2t-1+φzt-+εt 

with the cointegrated long-run series zt-1 are obtained from a first step regression  

Yt=αo +α1xt+α2xt-+εt 

Estimating the ECM in a one-step, single-equation employing the ARDL model would result in 

∆Yt=β0+ ∑ 𝛽1𝑦𝑡−1
𝑝
𝑖=1 +∑ 𝛾1𝑥𝑡−1

𝑞
0=1 +∑ 𝛾2𝑥𝑡−2

𝑞
0=1 𝑥+(φ0yt -1+φ1x1t -1+φ2x2t -1)+εt (14.1.1) 

(14.1.1) is similar to the conventional ECM; the terms inside the brackets represent the EC term. 

However, the difference is that now the coefficients on the lagged structure of the EC term et-1 

(equal to the expression inside the brackets) in eq. (14.1.1) have no a priori restrictions because 

the new model is estimated equation-by-equation; hence so, the coefficients of the EC term are 

not restricted across equations 

Step 2: Compute the F or Wald statistics for testing the null hypothesis  

H0: φ0=φ1=φ2=0 

Rejection of H0 suggests a long-run relationship between y, x1 and x2. The exact critical values are 

not available for a different mix of I(0) and I(1) and the distribution of this test statistic is non-

standard. However, the critical values obtainable from Pesaran, Shin and Smith (2001) provide 

bounds on the critical values for the asymptotic distribution of the F-statistic; the lower bound FL 

is based on the assumption that all variables are I(0), and the upper bound FU on the assumption 

that all variables are I(1); and the critical bound values depend on whether a trend  is included or 

excluded in (1) 

Step 3: Compare the computed statistic from step 2 with critical FL and FU. 

-If Fb> FU, we reject Ho, and conclude that there is a potential long-run relationship between yt, 

x1t and x2t.  

-If Fb< FL, we fail to reject Ho and conclude that there is no long-run relationship between yt, x1t 

and x2t.  
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-If FL > Fb> FU, we conclude that the test is inconclusive, somewhat similar to the Durbin-Watson 

test.  

Using this method there is no need to know a priori the order of integration of the 

underlying variables when the computed F-statistic is above or below the critical bounds to 

conduct a co-integration test. As a cross-check, we should also perform the bounds t-tests on the 

coefficient of the lagged dependent variable, testing Ho:  φ0=0 against HA:  φ0 < 0; such t-tests are 

also non-standard though Pesaran, Shin and Smith (2001) supply the critical bounds values. If the 

t-statistic is larger than the tabulated “I(1) bound”, we conclude the existence of a long-run relation 

between the variables; if smaller than the “I(0) bound” variables are all non-stationary. The test is 

not valid in presence of I(2) series, hence the implementation of the bounds test requires to 

ascertain first that there are no I(2) series among the variables.   

14.2 Slope heterogeneity and Mean-Group Cointegration Test 

We examined the asymptotic of large N and small T with the limited information on time-varying 

observation. That limitation makes the assumption of homogenous slopes for cross-sectional units 

necessary for both fixed and random effects models. When both N and T are large, that assumption 

is no longer plausible; ignoring cross-sectional slope heterogeneity results in inconsistent 

estimates. With relatively large T, the individual equations can be estimated for each unit 

separately for static and dynamic panels. In this section, we examine consistent estimators with 

models of cross-sectional erogeneity as T →∞. However, allowing for slope heterogeneity does 

not necessary rule out the shared features that cross-sectional units have in common, for example 

shared industry, or geography, economic and financial climate. In particular, while the dynamics 

of adjustment towards equilibrium differ among the cross-sectional units, they could converge to 

the same equilibrium in the very long-run; therefore, it may be useful to employ a panel model of 

slope heterogeneity also applicable to the dynamics of the error correction model. In this section, 

we examine consistent estimators with models of cross-sectional heterogeneity as T →∞ with fully 

different cross-section slopes, and a mixture of homogenous and heterogenous slopes.     

 First, let’s examine the consequences of ignoring heterogeneity. Assuming a common fixed 

effects variable, the equation for a slope homogenous model is 

yit= μi + βixit + ui  
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where βi=β+ηi for ηi cross-sectional intercept (fixed or random). We can define the slope 

heterogeneity in terms of the ηi features. Suppose we wish to examine systematic dependence 

between ηi , the regressors xit , and say another set of variables zit , generated as new linear or 

nonlinear functions from xit . We could formulate a model that ignores slope heterogeneity 

yit= αi +δxxit + δzzit + vit  

Let wit= (xit, zit)’ independently distributed over time, with the covariance matrix as 

Ωi=[
𝑤𝑖𝑥𝑥 𝑤𝑖𝑥𝑧

𝑤𝑖𝑧𝑥 𝑤𝑖𝑧𝑧
] 

Since the βi are assumed fixed over time, the dependence of μi  on wit is ruled out. Then the FE 

estimations δx and δz are consistent if  

Cov (𝑤𝑖𝑥𝑧, μi )= Cov (𝑤𝑖𝑥𝑥 , μi )=0 

Suppose δz are spurious, incorrectly included as regressors. The FE estimator δz is robust to slope 

heterogeneity if the included zit are, on average, orthogonal to xit. However, given slope 

heterogeneity, the FE estimator of δx are inconsistent even if zit and xit are orthogonal. The bias of 

estimated δx, FE is positive if Cov (𝑤𝑖𝑥𝑥 , μi ) > 0 and vice versa. More generally, if E (𝑤𝑖𝑥𝑧) ≠ 0 

and Cov (𝑤𝑖𝑥𝑧, μi ) ≠ 0, and/or when Cov (𝑤𝑖𝑥𝑥 , μi ) ≠ 0, the FE estimators of δxFE and δzFE are 

inconsistent. For example, consider spurious, incorrectly included RH quadratic terms in the above 

model by setting zit=xit
2. It is possible to reject linear slope heterogeneity not because of valid non-

linearilties, but also because cross-sectional heterogeneity is disregarded. With the βi assumed 

fixed over time, the nonlinear specification  

 yit= αi +δxxit + δzxit
2 + vit  

cannot meet the above covariance conditions for consistency unless βi varies proportionally with 

xit . However, the variation can be systematically related to some other aspect of cross-sectional 

distribution of xit unrelated to proportionality; for example 

βi =ϒ0+ ϒ1�̅�𝑖𝑡 

where �̅�𝑖𝑡 = 𝑇−1 ∑ 𝑥𝑖𝑡
𝑇
𝑡=1 . If linear slope heterogeneity is disregarded, it is possible to obtain a 

statistically a significant quadratic effect as explained in Figure 14.1 that shows three cross-

sectional units (countries) with slopes that differ systematically with �̅�𝑖𝑡. The pooled regression 
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based on the scatter points from all three would display pronounced non-linearities even though 

the unit-specific regression is linear.   

 

Figure 14.1 Slope Heterogeneity 

The Mean-Group and Panel Mean-Group Estimators 

We turn to an examination of the two alternative estimators among several that allow for slope 

heterogeneity. The estimators rely on N time-series regressions and averages coefficients. Assume 

an autoregressive distributed lag (ARDL) dynamic panel specification of the following type 

Yit=∑ 𝜆𝑖𝑗𝑦𝑖𝑡−𝑗
𝑝
𝑗=1 +∑ 𝛿′𝑖𝑗𝑥𝑖𝑡−𝑗

𝑞
𝑗=0 + μi+ εit     (14.2.1) 

Where the number of groups i=1, 2, …, N, and the number of time periods t=1, 2, …, T; xit is a 

(k.1) vector of explanatory variables,  𝛿𝑖𝑗 are the (k.1) coefficient vectors, 𝜆𝑖𝑗 are scalars, and μi 

are group-specific fixed effect. The model is applicable to panels with large T because it requires 

fitting a separate regression for each group, and may include a time trend and other fixed 

regressors. If the variables are I(1), then the error term is I(0) if the variables are co-integrated and 

adjust to any deviation from long-run equilibrium. If so, it is common to re-parametrize the model 

as the error correlation equation: 

 ∆Yit=𝜙i (yit-1 - 𝛳i’Xit) + ∑ 𝜆 ∗𝑖𝑗 ∆𝑦𝑖𝑡−𝑗
𝑝
𝑗=1 +∑ 𝛿′ ∗𝑖𝑗 ∆𝑥𝑖𝑡−𝑗

𝑞
𝑗=0 + μi+ εit   (14.2.2) 

Where subscripted * parameters indicate group mean avarages for each groupi i, 𝜙I are the error 

correction terms that measure the speed of adjustment to deviations from the equilibrium. For 

example, with the ARDL (1, 1, 1) dynamic panel specification, we have 

𝜙i =  − (1− 𝜆𝑖 ), 𝛳0i =
𝜇𝑖

1 −  𝜆𝑖
 , 𝛳it =

𝛿10𝑖+ 𝛿11𝑖

1 −  𝜆𝑖
 , 𝛳2i =

𝛿20𝑖+ 𝛿21𝑖

1 −  𝜆𝑖
; 

the main parameters of interest are the error correction speed of adjustment coefficients 𝜙I, with 

𝛳1i  and 𝛳2i as the long-run coefficients.  
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One approach to the estimation of the above panel error correction model is to use the fixed 

effects method; all group time-series data are pooled and only the intercept is allowed to differ 

across groups. As discussed above, the method can lead to inconsistency. Pesaran and Smith 

(1995) proposed an alternative mean group (MG) estimator employing a simple arithmetic 

average of the coefficients that allows the intercept, slope coefficients, and error variances to 

change across groups (or panels). The MG is defined as the average of the OLS estimators, �̂�𝑖 

β̂MG =
1

N
  ∑β̂i

N

i=1

 

where  β̂i=(Xi’Xi)
-1Xi’yi. More generally, for the heterogenous slopes 

ѱ̂MG =
1

N
  ∑ѱ̂i

N

i=1

 

where the individual OLS slopes are  ѱ̂i=(Wi’Wi)
-1Wi’yi. Moreover, the variance of ѱ̂MGE is also 

consistently estimated by 

Var̂ (ѱ̂i)=
1

N(N−1)
 ∑ (N

i=1 ѱ̂MG − ѱ̂i)
2. 

The MG parameters are the simple unweighted means of the individual coefficients. For large N 

and T, the MG estimator is asymptotically normal as long as √𝑁/𝑇→ 0 as T →∞. However, the 

MG estimator is biased when T is small; it is unlikely to be effective if either N or T is small.  

However, slope heterogeneity may be false in the presence of long-run cointegration since 

that implies long-run homogenous parameters. Pesaran, Shin and Smith (1999), PSS, proposed an 

extension of the MG estimator that permits a mixed long-run homogeneity for the error correction 

terms, and heterogenous parameter lag structure for short-term dynamics. That is, the assumption 

that the long-run coefficient of Xit , defined by ϴi= -βi/φi, is the same across the cross-sectional 

unit equations: 

ϴi= ϴ,  i=1, 2, …, N. 

This estimator is known as the Pooled Mean Group (PMG) estimator, an intermediate estimator 

between FE and MG estimators. The PMG models error correction long-run homogeneity by 
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pooling the observation over time. The error correction model under the PMG homogeneity 

assumption can be compactly written as  

∆yi= φi Ѯi(ϴ) + Wiki +εi       (14.2.3) 

where * indicates mean group avarages and pooling has removed the variation by t (compare 14.2.2 

with 14.2.2), ki = (λ*i1, λ*i2, …, λ*ip-1; δ*’i0, δ*’i1, …, δ*’iq-1)
/; Wi=(∆yi-1, ∆yi-2, …, ∆yi-p+1; ∆Xi, ∆Xi-

1, …, ∆yi-q+1), the error correction compound term is Ѯi(ϴ)=yi-1 - Xiϴi. Three characteristics should 

be noted about this estimator. First, it imposes the cross-equation restriction for the long-run 

homogeneity assumption. Second, error variances differ across cross-sectional units. Finally, the 

regression equations for each unit are non-linear in ϴ and φ parameters. To deal with the last issue 

for non-linear estimation, PSS (1999) develop a maximum likelihood method of estimation, 

combining both pooling and averaging, that expresses the likelihood as the product of each cross-

section’s likelihood, and after taking log results as: 

ℓT(ϴ’,  φ’, 𝜎′)= − 
𝑇

2
∑ ln(2𝜋𝜎𝑖

2) −
1

2
∑

1

𝜎𝑖
2{∆𝑦𝑖 − 𝑁

𝑖=1  𝑁
𝑖=1 ∅𝑖Ѯ𝑖(𝛳)}′ H{∆𝑦𝑖 − ∅𝑖Ѯ𝑖(𝛳)} 

where φ=(φ1, φ2, …, φN), 𝜎= (σ1
2, σ2

2, …, σN
2), Ѯi(ϴ)=(yit-1 - Xiϴi) for the error correction 

parameters, and Hi=IT – Wi(Wi’Wi)Wi and IT is an identity matrix of order T. The PMG estimator 

highlights the pooling effect of the homogeneity assumption using group averages to obtain group-

wide mean estimates of the long-run error correction coefficients restricted to be the same across 

equations and the other short-run parameters. Note that for small T, the error correction standard 

errors of the PGM will be downward biased due to limited variation over time, and it may then be 

necessary to improve estimation accuracy by employing a bootstap biased-reduction procedure, 

see chapter 12.    

14.3 Hausman test of GM against PGM. 

Testing for cointegration can be achived by a test comparion of MG againt PMG estimates. MG 

has no imposed slope homogeneity assumption and due to its averaging method has contistent 

estimates. However, the consistency of the PMG estimator depends on whether the long-run slope 

elasticities are equal across all panels; otherwise, the PMG estimates are inconsistent. A Hausman 

model selection test, applied in chapter 4 to test FE against RE model is employed to decide the 

mpdel selection. The homogeneity hypothesis is rejected if the true model is heterogenous, while 
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the MG estimates remain consistent in either case. A Hausman test determines whether PMG 

estimates are consistent if they do not significantly differ from the common parameters of the MG 

model estimates; otherwise, the PMG is rejected; that is, there is no coinegration and the error 

correction PMG model estimator is inapplicable.  

Readings 

For textbook discussion, see Pesaran (2015, chapters 28 and 22) for long T panel data with slope 

heterogeneity, full or mixed with homogeneity; and bounds test respectively. See Pesaran, Shin and 

Smith (1999) for mean group large T panel estimator; Pesaran et. al. (2003) developed the bounds 

test of panel data cointegration.  
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Chapter 14 ARDL Long Panel Cointegration Test & VEC Estimation Exercises 

Q14.1 Download davegiles-naturalgasprices.dta, time-series of European and us gas prices.  

*a. Fit an ARDL autoregressive model of eur on us; select the number of eur lags by AIC and 

BIC, and test for co-integration by the PSS bounds test. Explain and comment on your testy results.    

Q14.2 Download lutkepoh12.dta contains quarterly series of investment, income and consumption 

in levels and log levels for W. Germany, 1960-82.   

a. Fit an ARDL model for ln_inv as a linear function of ln_inc and ln_consump  

b. Re-run the model in a. as an ARDL error correction model; identify the error correction 

estimate, and explain its interpretation within the ARDL model. 

c. Test the model in b. for cointegration by PSS bounds test procedure. Explain how the 

outcome of PSS test is determined. Briefly explain the difference between the PSS test and 

the IPS (Im, Pesaran & Shin) test of the unit-root of chapter 9.   

Q14.3 Download SamieiOECD.dta on saving/consumption data file for 21 OECD countries 

examined in Masson, Bayoumi and Samiei (1998, WBER). 

a. Obtain PMG estimate for a differenced model of consumption regressed on income and 

inflation.  

b. Test the theory that Ho: income elasticity=1, state the test result. 

c. Since each group has its own estimated equation, predict the variable id, and apply 

cross-equation restriction for id when its value 111 and 112.  

d. Obtain the MG estimates based on unweighted mean of N individual regression 

coefficients; compare the outcomes for PMG in a. and MG here.   

e. Test PMG’s Ho: L-R elasticities are equal across all panels, state the outcome. 
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Ch 15 Spectral Analysis of Time-series 

Introduction 

Time-series analysis discussed so far are all based on examining data in a time-domain; for 

example, we discuss the evaluation of autoregressive processes Yt in terms of its autocovariance, 

or autocorrelation function, based on distinct time and displacement t & 𝜏. We now turn to a 

complementary approach to time-series based on cycles of different frequencies; this frequency-

domain approach to time-series is known as spectral analysis. Its aim is to decide how important 

are cycles of different frequencies in explaining the behavior of a time-series by employing an 

alternative function called the spectral density function.  The two types of time-series analyses 

are complementary rather than mutually exclusive; application depends on which type offers a 

simpler representation of the key features of the data at hand.  

15.1 Modeling Time-series by cycles  

Instead of modeling the AR, MA or ARMA defined in terms of time-lags, spectral analysis describes 

the behavior of a time-series Yt as a weighted sum of trigonometric periodic functions cos(ω) and 

sin(ω) for a particular frequency denoted by ω, that is by 

Yt =μ +∫ 𝛼(𝜔). 𝑐𝑜𝑛(𝜔𝑡)𝑑𝜔 + ∫ 𝛿(𝜔). 𝑠𝑖𝑛(𝜔𝑡)𝑑𝜔
𝜋

0

𝜋

0
  (15.1.1) 

We start by defining the spectral distribution function. Suppose a time-series contains a periodic 

sinusoidal component with a known wavelength modeled as 

Yt=R cos (ωt+φ)+Zt       (15.1.2) 

where Zt ~ (0, 1) is dandom error, ω is the frequency of the sinusoidal variation, R gives the 

amplitude of the variation (with a maximum at +R and a minimum at – R), φ determines its phase, 

that is where in the cycle, Yt would be at time t=0.  ω measures how quickly Yt cycles and is 

indicated by either of two following measures. The period or wavelength is the length of time 

required for the process to repeat a full cycle around the unit-circle’s circumference of 2π, namely, 

if ω=1, then Yt repeats itself every 2π periods; if ω=2, then Yt repeats itself every π periods. The 

frequency measures the number of cycles completed compared to the simple cos(t) wave during 

2π periods (equal to completing the circumference of a circle with a unit radius). For instance, if 

ω=2, the cycles are completed twice as fast as those for cos(t). There is a simple relationship 
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between the two measures cyclical speed, that is equal to wavelength= 2π/ ω. Chapman & Xing 

(2019) call (15.1.2) the spectral distribution function, but the function is also known by other 

names (see Figure 15.1 and below). A more convenient formulation of (15.1.2) is by writing the 

cycle as a combination of sine and cosine waves, replacing the amplitude and phase by two 

parameters α & β as  

Yt=α cos (ωt)+β sin (ωt) 

where R=(α2 + β2)1/2, and φ=tan-1(β/α) 

 Looking at the models like (15.1.1) shows that they are not stationary if parameters are all 

fixed constants because E(yt) will then change with time. The application of (15.1.1) to present 

stationary processes requires additionally assumptions that [Rj} be uncorrelated random variables 

with mean 0, and {φj} random variables mean zero with a uniform distribution on (0, 2𝝅), in order 

to treat time-series as stationary processes.  

As an example of (15.1.2) with k=3 periods or cycles, we first generate three series, then construct 

an aggregate fourth combined series as follows: 

Xt1=cos(10
𝜋𝑡

150
+

𝜋

8
), Xt2= 3cos(30

𝜋𝑡

150
+

3𝜋

8
), Xt3= 5cos(60

𝜋𝑡

150
+

5𝜋

8
), Zt ~ N(0, 1)  and 

Xt= Xt1+ Xt2+ Xt3+Zt 

 

Figure 15.1 Periodic components and their sum 

(top left: Xt1; Top right: Xt2; Bottom left Xt3; Bottom right: Xt) 
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Given the covariance-stationary process for Yt , we define its mean E(Yt )=μ and jth autocovariance 

as E(Yt – μ)( Yt-1 – μ)=𝛾𝑗. Assuming these autocovariances are well-behaved, namely, absolutely 

summable, the autocovariance function defined as a function of ω is given by 

gY (z)=∑ 𝛾𝑗𝑧𝑗
∞
𝑗=−∞        (15.1.3) 

z denotes a complex scalar. If (15.1.3) is divided by 2π and evaluated value of 𝒛 = 𝒆−𝒊𝝎 where 

𝒆−𝒊𝝎 is a complex exponential function with i=√−𝟏, see Mathematical Appendix, then Hamilton 

(1994) calls (15.1.3) the population spectrum of Y (though simply the spectrum is a more 

common name for this function)   

𝑠𝑌(𝜔) =
1

2𝜋 
𝑔𝑌(𝑒−𝑖𝜔) =

1

2𝜋 
∑ 𝛾𝑗

∞
𝑗=−∞ 𝑒−𝑖𝜔𝑗    (15.1.4) 

According to (15.1.4), the spectrum is a function of ω and can be calculated at a particular value 

of ω for a sequence of its autocovariances. Using De Moivre’s theorem based on Euler’s rule, see 

exercise Q15.1, we can rewrite 𝒆−𝒊𝝎𝒋 in terms of sinusoidal functions as  

𝑒−𝑖𝜔𝑗 = cos(𝜔j) − 𝑖. 𝑠𝑖𝑛 (𝜔j)       (15.1.5) 

Substituting for  𝒆−𝒊𝜶𝒋 in (15.1.3) leads to the equivalent form of the population spectrum in terms 

of cos and sin functions of ω: 

𝑠𝑌(𝜔) =
1

2𝜋 
∑ 𝛾𝑗

∞
𝑗=−∞  [cos(𝜔j) − 𝑖. 𝑠𝑖𝑛 (𝜔j)]     (15.1.6) 

Using the symmetry of a covariance-stationary process, ϒj=ϒ- j to write out ϒj & ϒ- j separately in 

terms of (𝜔j) & (− 𝜔j) leads to 

𝑠𝑌(𝜔) =
1

2𝜋 
∑ 𝛾0

∞
𝑗=−∞ [cos(0) − 𝑖. sin (0)] +

1

2𝜋 
∑ 𝛾𝑗

∞
𝑗=−∞ [cos(𝜔j) + [cos(𝜔j) − 𝑖. 𝑠𝑖𝑛 (𝜔j) −

𝑖. 𝑠𝑖𝑛 (− 𝜔j)]        (15.1.7) 

(15.1.6) and (15.1.7) are equivalent ways of writing the population spectrum but (15.1.6) allows 

using trigonometric results to simplify (15.1.4). Using the rules for 

Cos(0)=1, sin(0)=0, sin(- ϴ)= - sin( ϴ); con(- ϴ)=con( ϴ), 

the first square bracket equals 1, and the second square bracket is equal to (15.1.4) but has equal 

terms added to con and sin on either side of minus sign in the middle, resulting in: 
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𝑠𝑌(𝜔) =
1

2𝜋 
{𝛾0 + 2.∑ 𝛾𝑗

∞
𝑗=−∞ 𝑐𝑜𝑛 (𝜔j)}      (15.1.8) 

This spectrum, with 𝜔j independent of N, is also known as the Fourier Transformation of the 

autocovariance function (acv.f), also equivalently expressed as an expotental function of 𝜔, see 

section 15.2. 

 Since con(𝜔𝑗 + 2𝜋)=con(𝜔𝑗), then it follows from (15.1.8) that 𝑠𝑌(𝜔𝑘 + 2𝜋))= 𝑠𝑌(𝜔) for 

any integer K. Therefore, the spectrum is a periodic function of ω; if we know the value of 𝒔𝒀(𝝎)  

for all ω between 0 and π, we can calculate the value of 𝒔𝒀(𝝎) for any ω. However, the reverse is 

also true; given a spectrum and a value of ω, we can calculate the corresponding covariance by 

inversion of (15.1.8) to express the autocovariance γj as a function of 𝒔𝒀(𝝎). The autocovariance 

generating function obtained by the inversion of (15.1.8) is known as the power population 

spectrum of Y. The frequency-based autocovariance function measures the contribution of every 

𝝎 with different frequency in the 0 to 𝟐𝝅 to the variance of the time-series.  

An example: calculation of the population spectrum for AR(1) process: Yt – 𝜇 = (1 – φL)-1𝝴t. 

According to (15.1.3) and (15.1.4), spectrum scales the series z by covariance 𝛾𝑗 =E(yt-μ)(yt-𝛕 - μ), 

where the brackets consist of an infinite geometrical series of the residuals, see chapter 4. The 

series by z is defined exponentially as 𝒛 = 𝒆−𝒊𝝎. This autocovariance-generating function can be 

written as (see Hamilton p.62): 

𝑠𝑌(𝑧) = σ2(1+ φ1z+ φ2z
2+. . . + φqz

q) x (1+ φ1z+ φ2z-2+. . . + φqz-q)   (15.1.9) 

 Summarizing the autocovariance is through such a scalar-value function called the 

autocovariance-generating function. In general, a covariance-generating function with 𝒛 = 𝒆−𝒊𝝎 

is given by: 

gY(z)=σ2ψ(z) ψ(z-1)          (15.1.10)  

where the infinite residual series in (15.1.9) is approximated by ψ(z)= 1/(1 – φ) equation whose 

solutions lead to  the characteristic roots of the series that  depend on the φ values and as long as 

|φ| < 1. Defining z as  𝒆−𝒊𝝎, (15.1.4) and (15.1.10) can also be expressed as: 

gY(z)=(2𝜋)-1σ2ψ(𝒆𝒊𝝎) ψ(𝒆−𝒊𝝎)         (15.1.11) 
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Using (15.1.3) and (15.1.4) with 𝒛 = 𝒆−𝒊𝝎, the application of (15.1.10) and (15.1.11) leads to the 

spectrums of AR(1) process for the MA,  AR, and ARMA processes (see end of chapter exercises). 

15.2 Fourier Analysis 

The autocovariance 𝑓(𝜔) as the inverse of the spectrum is a continuous function in [0, π] interval 

with the derivative obtained from: 

𝑓(𝜔) =
𝑑𝐹(𝜔)

𝑑𝜔
           (15.2.1) 

(15.2.1) can be expressed in the form 

γ (k)=∫ 𝑐𝑜𝑠  𝜔𝑘𝑓(𝜔)𝑑𝜔
𝜋

0
         (15.2.2) 

Putting k=0, we have 

γ (0)=𝜎𝑥
2=∫ 𝑓(𝜔)𝑑𝜔

𝜋

0
= 𝐹(𝜋)       (15.2.3) 

𝑓(𝜔)𝑑𝜔 represents the contribution of the spectrum to variance of the components with 

frequencies in [𝜔,𝜔 + 𝑑𝜔] range; (15.2.3) indicates that the total area under the spectrum curve 

is equal to the variance of the process. It is important to note that the spectrum and the 

autocovariance function (acv.f.)  are equivalent ways of describing a stationary stochastic 

process; they complement each other, expressing the same information in different ways. 

(15.2.2) expresses γ (k) in terms of 𝑓(𝜔) as a cosine transformation. The corresponding inverse 

relationship can be shown to be 

𝑓(𝜔)=
1

𝜋
∑ 𝛾(𝑘)𝑒−𝑖𝜔𝑘∞

𝑘=−∞           (15.2.4) 

 (15.2.4) spectrum is known as the Discrete Fourier transform (DFT) of the acv.f . The 

DFT establishes a representational relationship between the discrete time domine signals and their 

transformation into the equivalent in frequency domine; in practice such a transformation would 

be too slow to be helpful; instead, a much faster equivalent procedure is relied upon to implement 

the transformation, see section 15.4.2 below. (15.2.3) & (15.2.4) together are called the Fourier 

transform pair. The transform is usually written in the equivalent form as: 

𝑓(𝜔)=
1

𝜋
 [𝛾(0) + 2∑ 𝛾(𝑘)𝑐𝑜𝑠𝜔𝑘

∞
𝑘=−∞ ]        (15.2.5) 
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It sometimes appears in normalized form given by 

𝑓∗(𝜔) =
𝑓(𝜔)

𝜎𝑥
2 =

𝑑𝐹∗(𝜔)

𝑑𝜔
          (15.2.6) 

where 𝑓∗(𝜔) is the Fourier transform of the acv.f.; written equivalently 

𝑓∗(𝜔)=
1

𝜋
 [1 + 2∑ 𝜌(𝑘)𝑐𝑜𝑠∞

𝑘=−∞ 𝜔𝑘         (15.2.7) 

Where 𝑓∗(𝜔)dω is the proportion of variance in the interval [ω, ω+dω]. 

Fourier analysis, also known as Harmonic analysis,18 plays an important role in spectral time-

series models in providing approximation for a function by the sum of its sine and cosine terms 

called the Fourier series representation. Suppose f(t) is defined on (- 𝝅,𝝅] (different shape 

brackets indicate the lower limit - 𝝅 is excluded from the interval). Then, given a finite number 

of discontinuity and number of maxima and minima, the f(t) function can be approximated by the 

Fourier series over an interval of r=1, 2, …k of different wavelengths. 

𝑎0

2
+ ∑ (𝑎𝑟 

𝑘
𝑟=1 𝑐𝑜𝑠(𝑟𝑡) + 𝑏𝑟 𝑠𝑖𝑛(𝑟𝑡)       (15.2.8) 

where 𝑎0 = 
1

𝜋 
 ∫ 𝑓(𝑡)𝑑𝑡

𝜋

− 𝜋
 , 𝑎𝑟 = 

1

𝜋 
 ∫ 𝑓(𝑡) 𝑐𝑜𝑠(𝑟𝑡) 𝑑𝑡

𝜋

− 𝜋
 , 𝑏𝑟 = 

1

𝜋 
 ∫ 𝑓(𝑡) 𝑠𝑖𝑛(𝑟𝑡) 𝑑𝑡

𝜋

− 𝜋
. 

The Fourier application to a time-series partitions the total sum of squares into a residual 

component and an explained sum of squares by the periodic component at frequency ω (similar to 

the ANOVA analysis of variance); the latter component is given as 

∑𝛿𝑗
2

𝑀

𝑗=1

[(�̂�𝑐𝑜𝑠2(𝜔𝑗𝑡) + �̂�𝑠𝑖𝑛2(𝜔𝑗𝑡)] 

Since the trm inside the squared brackets is unity, that provides the aggregate variance for a simple 

deterministic sinusoidal at a known ω, Xt=μ+α.conωt+β.sinωt+Zt. The last equation can be 

decomposed by (15.2.8) into the different wavelengths contributing to the variance.  

 The upper bound 𝝅 called the Nyquist frequency is the highest frequency about which the 

data can provide meaningful information; it is expressed as cycles per unit time as 𝑓𝑁=𝜔𝑁 /2 𝝅. 

 

18 A harmonic series is the sum og its positive unit-fractions: ∑
1

𝑛
= 1 +

1

2
+

1

3
+

1

4
+. . .

∞

=1
 



 234 

The lowest frequency is called the fundamental Fourier frequency because the Fourier 

representation of the data is normally evaluated at the frequencies that are all integer multiplies of 

the fundamental frequency; the integers are called harmonics. When f(t) is a periodic with T 

period so that f(t)=f(t + nT), then f=1/T or  𝝎 =2 𝝅/𝑻 becomes the fundamental and the Fourier 

representation of f(t) is the sum of the over integer multiples, or harmonics. Basically, the 

fundamental frequency of a time-series is its first frequency, while its harmonics are all remaining 

frequencies. Note that the highest frequency does not depend on N while the lowest frequency does 

depend on N. This raises the important question about the consistency of the spectral estimation 

based on the Fourier series discussed in section 15.5.       

15.3 Calculation of Covariances from Population Spectrum 

If we know the sequence of autocovariances {𝜸𝒋}𝑗=−∞
∞ , then (15.1.2) and (15.1.7) shows we can 

calculate the value of time-series as a function of its periodic functions for a given value of 𝝎, and 

conversely, given the value of 𝑠𝑌(𝝎) for all 𝝎 in [0, 𝝅], we can calculate the value of any 

autocovariance 𝜸𝒌 for any displacement value k.  

i. Proposition 1 

The formula for calculating any autocovariance from the population spectrum is given by the 

following proposition: 

Proposition 1: Let {𝜸𝒋}𝑗=−∞
∞  be an absolutely summable sequence of autocovariances, and (15.1.3) 

its autocovariance generating function, then 

∫ 𝑠𝑌(𝜔)𝑒𝑖𝑤𝑘𝜋

−𝜋
 𝑑𝜔 = 𝛾𝑘       (15.3.1) 

Using De Moivre’s theorem (15.1.5) and (15.1.3) applied to the sum of trigonometric functions, 

(15.1.8) can be equivalently be written as: 

∫ 𝑠𝑌(𝜔)cos 
𝜋

−𝜋
(𝜔𝑘)𝑑𝜔 = 𝛾𝑘       (15.3.2) 

Let’s first obtain the result of the proposition for the variance of y, i.e. with displacement k=0. 

∫ 𝑠𝑌(𝜔)
𝜋

−𝜋
𝑑𝜔 = 𝛾0         (15.3.3) 
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Hence, the area under the population spectrum between [− 𝜋, +𝜋] is equal to the variance of Yt,  

𝛾0. Next, rewrite (15.3.2) for k≠ 0 to account for nonnegative autocovariances between  

[t, t+k] periods Y 

∫ 𝑠𝑌(𝜔)
𝜔

−𝜔1
𝑑𝜔 = 𝛾𝜔        (15.3.3) 

(15.3.3) would be a positive number for any frequency 𝜔1 between [0, 𝜋], we can take that value 

as the proportion of the variance of Yt due to frequencies 𝜔 less than   𝜔1 in absolute value; as 

𝑠𝑌(𝜔) is a symmetric function, the value of (15.3.3) between [- 𝜔1 , 0] = [0,+ 𝜔1], we have 

2. ∫ 𝑠𝑌(𝜔)
𝜔1

0
𝑑𝜔 = 𝛾𝜔       (15.3.4) 

To understand the reason that (15.3.3) & (15.3.4) measure the periodic random components less 

than 𝝎1 rather than 𝜔1 itself, consider a portion of the variance of a special Yt stochastic process 

attributed to cycles with frequencies ≤ 𝜔1; suppose the value of Y at time t for M different 

frequencies is, using (15.1.1), given by: 

𝑌𝑡 = ∑ [𝛼𝑗
𝑀
𝑗=1 .cos(𝜔𝑗𝑡) + 𝛿𝑗 .sin(𝜔𝑗𝑡)]      (15.3.5) 

For (15.3.5), 𝛼𝑗  & 𝛿𝑗are two mean-zero random variables, therefore, E(Yt)=0 for all t, and {𝛼𝑗}𝑗=1
𝑀  

& {𝛿𝑗}𝑗=1
𝑀

 are serially and mutually uncorrelated; thus the variance 𝜎𝑗
2 remains unchanged for all 

j & k , so E(Yt)= 0, independent of t. The variance of Yt can be simplified to: 

𝐸(𝑌𝑡
2) = ∑ [(𝛼𝑗

2𝑀
𝑗=1 ). 𝑐𝑜𝑠2(𝜔𝑗𝑡) + (𝛿𝑗

2). 𝑠𝑖𝑛2(𝜔𝑗𝑡)] 

= ∑ 𝜎𝑗
2𝑀

𝑗=1 [𝑐𝑜𝑠2(𝜔𝑗𝑡) + 𝑠𝑖𝑛2(𝜔𝑗𝑡)] 

= ∑ 𝜎𝑗
2𝑀

𝑗=1        (15.3.6) 

cycles of 𝜔j frequency are equal  𝑡𝑜 𝜎𝑗
2. The portion of the variance of Y due to cycles ≤ 𝜔𝑗, given 

the ordered frequencies 0 < 𝜔1 < 𝜔2 < …< 𝜔𝑀 < 𝜋, is equal to ∑ 𝜎𝑗
2𝑗

𝑗=1 . Then the kth 

autocovariance of Y becomes  

𝐸(𝑌𝑡 𝑌𝑡−𝑘) = ∑ {(𝛼𝑗
2𝑀

𝑗=1 ). 𝑐𝑜𝑠(𝜔𝑗𝑡). 𝑐𝑜𝑠[𝜔𝑗(𝑡 − 𝑘] + (𝛿𝑗
2). 𝑠𝑖𝑛(𝜔𝑗𝑡). 𝑠𝑖𝑛[𝜔𝑗(𝑡 − 𝑘)]} 

      = ∑ 𝜎𝑗
2𝑀

𝑗=1 . {𝑐𝑜𝑠(𝜔𝑗𝑡). 𝑐𝑜𝑠[𝜔𝑗(𝑡 − 𝑘)]+ 𝑠𝑖𝑛(𝜔𝑗𝑡). 𝑠𝑖𝑛[𝜔𝑗(𝑡 − 𝑘)]} 
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Employing the trigonometric identity cos(A – B)=cos(A).cos(B)+sin(A).sin(B) with A=𝜔𝑗𝑡, 𝐵 =

𝜔𝑗(𝑡 − 𝑘), & (A – B)= 𝜔𝑗𝑘, the kth autocovariance of Y simplifies to a function independent of 

time as 

𝐸(𝑌𝑡 𝑌𝑡−𝑘) = ∑ 𝜎𝑗
2𝑀

𝑗=1 . 𝑐𝑜𝑠(𝜔𝑗𝑘)     (15.3.7) 

Since neither (15.3.6), and nor (15.3.7) are functions of time, (15.3.5) is a covariance-stationary 

process, namely, depends only on the displacement k.  

This outcome is contingent on the special covariance-stationary nature of (15.3.5), but why should 

there be a finite sum of frequencies involved in (15.3.6) and (15.3.7)? However, a similar general 

result, known as the spectral representation theorem, states that as j →  ∞, the same results hold 

for any covariance-stationary process. Given any fixed frequency 𝝎 in [0, 𝝅], with defined random 

variables α(𝜔) & δ(𝜔) , a stationary process with summable autocovariances can be written as:  

Yt =μ +∫ [𝛼(𝜔). 𝑐𝑜𝑛(𝜔𝑡) + ∫ 𝛿(𝜔). 𝑠𝑖𝑛(𝜔𝑡)]𝑑𝜔
𝜋

0

𝜋

0
  (15.3.8) 

 (15.3.8) has the properties that the random variables 𝛼(. ) & 𝛿(. )  are serially uncorrelated over 

time and also uncorrelated with each other; one can, therefore, calculate the portion of the variance 

of Yt due to cycles less than or equal to some specified 𝜔1 by (15.3.8) the generalization of (15.3.7). 

Summarizing, we invert the spectrum of a time series as a function of 𝜔 and autocovariance to 

obtain variance and covariance; given orthogonality of cosine and sine terms, we then obtain the 

spectrum representation theorem as the linear sum of cosine and sine (𝜔𝑡) over the interval [0, 𝛑] 

for a pair of functions of the time series and its corresponding autocovariance.  

ii. Sample Periodogram 

The analog of (15.1.1) estimated from sample data is known as the sample periodogram; the same 

calculation employed to obtain (15.1.8) applied to data shows that the area under the periodogram 

is the sample variance of y.  Moreover, the finite sample analog of (15.1.1) for a time-series Yt as 

a weighted sum of trigonometric periodic functions, given sample orthogonality of each periodic 

function and orthogonality between them, provides a finite sample estimates of the partitioned 

portions of the population variance for cycles with frequencies 𝝎j from the sample periodogram. 

The periodogram as a sample analog for the spectrum is expressed as:  
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�̂�𝑌(𝜔) =
1

2𝜋 
{𝛾0 + 2. ∑ 𝛾𝑗

∞

𝑗=−∞

𝑐𝑜𝑛 (𝜔 j)} 

The same calculation as before also leads to the area under the periodogram as being the analog 

for the population variance and given its symmetry around 𝛚=0, is equal to  

𝛾𝑗= 2∫ �̂�𝑌(𝜔)𝑑𝜔
𝜋

0
 

The sample variance of y is T-1=∑ (𝑦𝑡 − �̅�)2𝑇
𝑡=1 , and the portion of this variance from cycles 𝜔𝑗 

can be obtained from the sample periodogram �̂�𝑌(𝜔𝑗). If the sample size T is an odd number and 

the number of periodic functions with different frequencies as M≡(T-1)/2, then 𝜔1=(2𝜋/𝑇) with 

M=1, 𝜔2=(4𝜋/𝑇) with M=2, . . . , 𝜔M = (2𝑀𝜋/𝑇) with M periodic  functions; and the highest 

frequency is 𝜔M={[2(𝑇 − 1)𝜋]/2𝑇}<𝛑. Therefore, the constant factor of proportionality for all 

𝛚j cycles is 2𝜋/𝑇. Now consider an OLS regression of yt on a constant and on the various cosine 

and sine terms as:  

𝑌𝑡 = 𝜇 + ∑ {𝛼𝑗
𝑀
𝑗=1 .cos[𝜔𝑗(𝑡 − 1)] + 𝛿𝑗 .sin[𝜔𝑗(𝑡 − 1)]} + 𝑢𝑡 

Run as a usual OLS regression. The coefficients of this model have the property that 
1

2
(�̂�𝑗

2 + 𝛿𝑗
2) 

represents the portion of the sample variance attributed to cycles with frequency 𝜔𝑗; this quantity 

is also proportional to the sample periodogram assessed at 𝜔𝑗frequency.  

The proof of the above claim that the sample periodogram measures the part of the sample variance 

of y that results from cycles of different frequencies is rather long, see Hamilton (1994) Appendix 

6.2(a)-(c). Here, we comment on the critical components of this proposition for the case of an odd 

number of sample observations 

Proposition 2: Let T denote an odd integer, M ≡(T-1)/2, 𝜔j =2 𝜋j /T for j=1, 2, . . . , M; and let  

T observations on a process be {y1, y2, . . . , yT}. Then the following are true: 

(a) The value of yt can be expressed as: 

yt = �̂� + { 𝛼�̂�. cos [𝜔j (t-1)] + 𝛿�̂�. sin [𝜔j (t-1)]}    (15.3.9) 

with the sample mean  �̅�=�̂� and for j=1, 2, . . . , M 
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𝛼�̂� = (2/T)∑ 𝑦𝑡. 𝑐𝑜𝑠[𝑇
𝑡=1 𝜔j (t-1)]      (15.3.10) 

𝛿�̂� = (2/T)∑ 𝑦𝑡. 𝑠𝑖𝑛[𝑇
𝑡=1 𝜔j (t-1)]      (15.3.11) 

(b) The sample variance of yt can be expressed as  

(
1

𝑇
)∑ (𝑦𝑡 − �̅� )2𝑇

𝑡=1 = (
1

2
)∑ [( 𝛼�̂� )

2
+ 𝑀

𝑗=1 ( 𝛿�̂�  )
2
]    (15.3.12) 

and the portion of the sample variance of y due to cycles of frequency 𝝎j is given by: 

1

2
[( 𝛼�̂� )

2
+ ( 𝛿�̂�  )

2
] 

(c) the portion of the sample variance of y due to cycles of frequency 𝜔j can be equivalently 

expressed as: 

(
1

2
)∑ [( 𝛼�̂� )

2
+ 𝑀

𝑗=1 ( 𝛿�̂�  )
2
] = (4𝜋/𝑇). �̂�𝑦 (𝜔j)    (15.3.13) 

where  �̂�𝑦 (𝜔j)  is the sample periodogram at frequency 𝜔j and where  4𝜋/𝑇 is the constant factor 

of proportionality.  

Regarding (a), yt in (15.3.9) has M con & sin cycles plus a constant, therefore, (2M+1)=T 

elements, so the number of variables is equal to the number of observations. Given the linearly 

independent elements, a least square regression of (15.3.9) produces a perfect fit with no error 

term.  

Moreover, the OLS coefficients in this case have the property that the magnitude of  

1

2
[( 𝛼�̂� )

2
+ ( 𝛿�̂�  )

2
] represents the portion of the sample variance due to cycles with frequency 𝜔𝑗; 

the magnitude turns out to be proportional to the sample periodogram evaluated at 𝜔𝑗. Therefore, 

we can find the portion of the sample variance due to cycles with frequency 𝜔𝑗 from the sample 

periodogram.  Moreover, note that the proposition excludes negative 𝜔j; it also confines 𝜔j to the 

[0, 𝜋 ] range, that is, 𝜔j must not be larger than 𝜋. As for  𝜔 < 0, consider a special case of the 

process in (15.3.6) 

yt = 𝛂. cos ( − 𝜔𝑡) + 𝛿. sin (− 𝜔) 

for zero-mean 𝛂 & 𝛿  random variables. However, because cos ( − 𝜔𝑡)= cos ( 𝜔𝑡) and 

sin (− 𝜔𝑡)= − sin (𝜔𝑡), this function is observationally equivalent to  
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yt = 𝛂. cos (  𝜔𝑡)  − 𝛿. sin (𝜔) 

Thus, one cannot tell if the data was generated by a ω>0 cycle or by a 𝜔 <0 cycle; by convention 

we focus only on ω>0 cycles. Moreover, the largest frequency that can be considered in (a) is 

𝜔= 𝜋. Consider if the data were generated by a process with frequency of 𝜔> 𝜋, for example 

𝜔= 3𝜋/2.  Then we have: 

yt = 𝛂. cos [(3𝜋/2)t] + 𝛿. sin [(3𝜋/2)t] 

yt = 𝛂. cos [(−𝜋/2)t] + 𝛿. sin [ (−𝜋/2)t] 

The shortest-period cycle observable is one repeating itself every 2
𝜋

𝜋
=2; if 𝜔= 3𝜋/2, the cycle 

repeats itself every (2 𝜋/1)/(3𝜋/2)=4/3 periods. However, the data is observed only at integer 

dates, the sampled data will exhibit cycles every four periods with frequency 𝜔= 𝜋/2.  Once again, 

cycles of frequency 𝜔= 3𝜋/2 cannot be observationally distinguished from cycles with frequency 

𝜋/2.  

 

Figure 15.2 Aliasing: plots of cos(𝛑/2)/t & cos(3𝛑/2)/t as functions of t 

Summarizing, if the data generating process includes the two periodic functions such that  

𝜔> 𝜋 and 𝜔 < 0  are observationally indistinguishable from their corresponding 𝜔= 𝜋/2; these 

cycles will be imputed to those with frequencies between [0, 𝜋].  This is known as aliasing. Figure 

15.2 explains this problem with the plots of these two functions of t. Although the function 

cos[(3𝜋/2)t] repeats itself whenever t increases by 4/3, one would only observe yt at four distinct 

dates (yt, yt+1, yt+2, yt+3) before seeing the value of cos[(3𝜋/2)t]  repeating itself for an integer value 

of t. 
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The more general result is that sampling will have an effect, in that variation at frequencies above 

the Nyquist frequency will be `folded back' to produce apparent variation in the sampled series at 

a frequency lower than the Nyquist frequency. If we denote the Nyquist by the portion of the 

sample due to cycles with frequency 𝝎𝒋, then 𝜔, (2𝜔N – 𝜔), (2𝜔N + 𝜔), (4𝜔N – 𝜔), , . . are aliases 

of each other, that is they are observationally indistinguishable; variations at all these frequencies 

will appear as variation at frequency 𝝎 in the sampled data.   

Note that given a finite sample, the lowest frequency used in describing the variation in y 

is 𝜔1=2 𝜋/𝑇. Proposition 2_c maintains that the portion of the sample variance due to cycles of 

frequency 𝜔j is proportional to the sample periodogram evaluated at 𝜔j ; while proposition 2_b 

maintains that the constant of proportionality is equal to 2𝜋/𝑇. This is the basis of the claim that 

the periodogram measures the portion of the sample variance of y due to different cycles. However, 

it would be misleading to interpret that to mean that the value of 𝑠𝑌(𝜔) represents the contribution 

of cycles with frequency ω to the variance of Y, and more accurate to mean it represents the 

contribution of cycles between  𝜔1 &  𝜔2. Assuming 𝑠𝑌(𝜔) is continuous, the contribution of a 

cycle with a particular value is zero. One should therefore interpret 
1

2
[( 𝛼�̂� )

2
+ ( 𝛿�̂�  )

2
] as the 

portion of the sample variance due to cycles with frequency near 𝜔j rather than exactly at 𝜔j; in 

other words, (15.3.3) is not an estimate of the height of the population spectrum but of the area 

under the population spectrum. Figure 2 illustrates this issue.  

Suppose 
1

2
[( 𝛼�̂� )

2
+ ( 𝛿�̂�  )

2
] is an estimate of the portion of the variance with frequency between 

𝜔j & 𝜔j-1 , equal to twice the area under 𝑠𝑌(𝜔) between 𝜔j & 𝜔j-1. Since 𝜔j= 2
𝜋𝑗

𝑇
;  

(𝜔j -  𝜔j-1)= 2
𝜋

𝑇
. Then the area under 𝑠𝑌(𝜔) between 𝜔j & 𝜔j-1 would be approximated by the area 

of a rectangle with width of 
2𝜋

𝑇
 and height of  𝑠�̂�(𝜔); therefore 

1

2
[( 𝛼�̂� )

2
+ ( 𝛿�̂�  )

2
]= 

𝑠�̂�(𝜔). (2 𝜋/𝑇) as the proposition (c) maintains.  
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Figure 15.3 variance by the area under the sample  

periodogram due to cycles of different frequencies 

Finally, the proposition provides a calculation method for the value of the periodogram at 

frequency  𝜔j= 2 𝜋𝑗/𝑇 for j=1, 2, . . . , (T -1)/2:  

�̂�𝑦 (𝜔j)= [
𝑇

8𝜋
][( 𝛼�̂� )

2
+ ( 𝛿�̂�  )

2
] 

using (15.3.13), and (15.3.10)-(15.3.11), then 

�̂�𝑦 (𝜔j)= [
1

2𝜋𝑇
]{[ ∑ 𝑦𝑡 . 𝑐𝑜𝑠[𝑇

𝑡=1 𝜔j (t-1)]2 + [∑ 𝑦𝑡. 𝑠𝑖𝑛[𝑇
𝑡=1 𝜔j (t-1)]2  

because (2/T) in front of (15.3.10)-(15.3.11) is squared and (T/8π).(2/T)2=1/2 πT.  

15.4.1 Estimating the Population Spectrum 

We examine the large sample properties of the periodogram by estimation of the population 

spectrum 𝑠𝑌(𝜔) by sample periodogram  𝑠�̂�(𝜔), given an observed sample for yt. It can be shown 

that with a sufficiently large sample size T, for 𝑠�̂�(𝜔) with 𝜔 ≠ 0, twice the ratio of the sample 

periodogram to the population spectrum is approximately χ2 distributed as 

2. 𝑠�̂�(𝜔)/ 𝑠𝑌(𝜔) ≈ χ2
(2)       (15.4.1) 

Therefore, the expected value of (15.4.1) is n=2 (the mean and variance of a χ2 distribution with 

d.f.=n equal n and 2n respectively). Therefore: 

𝐸[2. 𝑠�̂�(𝜔)/ 𝑠𝑌(𝜔)]≅ 2 

Since 𝑠𝑌(𝜔) is a population spectrum; E[2 𝑠�̂�(𝜔).]=2. 𝑠𝑌(𝜔); thus 

𝐸[ 𝑠�̂�(𝜔)] ≅𝑠𝑌(𝜔)          (15.4.2) 
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 (15.4.2) shows that the sample periodogram provides an approximately unbiased estimate 

of the population spectrum, given a sufficiently large sample size. However, a 95% confidence 

interval for χ2
(2) falls between 0.05 and 7.4, or (for n=2) 0.025 and 3.7. This means 𝑠�̂�(𝜔)would 

have to be as small as 0.025 times 𝑠𝑌(𝜔) and larger than 3.7 times  𝑠𝑌(𝜔)to remain statistically 

significant at 5%; an unlikely outcome for 𝑠�̂�(𝜔). Given such a large confidence interval, 𝑠�̂�(𝜔) 

is not a satisfactory estimate for 𝑠𝑌(𝜔). Can we deal with this problem by increasing the sample 

size? The answer is no. As already pointed out, (15.3.8) using N observations for different cycles 

per unit time to estimate and equal number of parameters; its estimation produces a perfect fit. 

Therefore, with sufficiently large N we can obtain an unbiased estimate of the population spectrum 

by the periodogram, but as N increases, so do the number of parameters estimates. Thus, even with 

a large sample size, an increase in size does not generate additional degrees of freedom, with the 

paradoxical outcome that  𝑠�̂�(𝜔) is an unbiased but inconsistent estimator of 𝑠𝑌(𝜔). In short, these 

limitations suggest that to produce a good estimate of a spectrum, the periodogram must be 

appropriately modified in application, a task to which we turn now.  

There are several such smoothing methods of the periodogram estimates. We discuss one that has 

gained popularity in recent times. The periodogram provides estimates of the variance and 

autocovariance parameters 𝒄𝟎  and 𝒄𝒋 , so one can write the periodogram equivalent of (15.1.8) as 

𝑠�̂�(𝜔) =
1

2𝜋 
{𝜆0𝑐0 + 2.∑ 𝜆𝑗

𝑀
𝑗=1 𝑐𝑗 𝑐𝑜𝑛 (𝜔 j)}    (15.4.3) 

Here {λj} are a set of weights called the lag window and the number of cycles M< T the truncation 

point. (15.4.3) shows that 𝑐𝑗 for M<J<T are not used, while the values of 𝑐𝑗  for J ≤ M are weighted 

by a factor of 𝜆𝑗; the weights chosen so as to get smaller as j approaches M, that is, as the number 

of frequencies becomes larger. In order to use this procedure, one must employ an appropriate lag 

window and truncation point. The choice of the truncation point is subjectively based on the 

balancing bias against variance (see below).  

15.4.2The Fast Fourier Transform  

The periodogram is the finite Discrete Fourier Transform representation, it demonstrates the conversion 

of a time-series from time domine into frequency domine. The conversion involves a multiplication of data 

of a column vector of signals in time-domine by a matrix containing conversion values that leads to a 

corresponding column of signals in frequency domine. For a sample size of N, this task would require N2 
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matrix operations; the conversion would be of the order of N2, or O (N2). If N is a large number, the 

application of the DFT becomes a cumebersome, slow, non-linear procedure and effectively infeasible. 

One popular alternative that simplifies the number of operations is based on an algorithm known as the 

Fast Fourier Transform (FFT). The FFT is computationally complex but more efficient and much less time-

consuming than the DFT as long as the algorithm depends on the factorization of N as a composite 

number19 to the power of 2; expressed as O (N log2 (N)). The procedure divides the column factor of time-

series data two groups of even and odd observations stacked on top of each other to carry out the matrix 

operations, and further divide each group in turn into even and odd observations so as to simplify the 

matrix operation. For example, if 210=1024, this “divide and conquer” strategy reduces, in repeated steps, 

a huge matrix of 1024 elements until it becomes a simple 2 by 2 matrix, F1024→ F512→ F254→. . .  →F4→ F2, 

so as to approximately linearize the series into O (N log2 (N)). This method therefore requires T not to 

be a prime number and therefore can be factorized; that is, if T is even, in T=r.s form at least one 

of the factors, say r, will be even; T is then a composite number. What if the N is not a composite 

number to a power of 2? Then one can always add a series of zeros to the end of the observation number 

to make it so, a procedure called Tapering or data windowing, and then apply the FFT.  The application 

of FFT then requires increasing the length of the data by creating a highly composite number for 

T with additional zeros observations to T so as to make the number of the form 2k; after removing 

any linear trend from the data. For example, T=382 observations is not highly composite, but one 

can increase the length of the data beyond that number by making it equal to 29=512 and then add 

512-382=130 zeros at one end. The application of the FFT first calculates the Fourier coefficients 

of the mean-corrected and average their squared values [( 𝑎𝑝)
2
+ ( 𝑏𝑞)

2
] in groups of around 10. 

To obtain most benefit from the FFT, the data should be large and in many thousands. 

 

15.5 Estimation of the spectrum 

One alternative for periodogram estimation is to fit an autoregressive AR or ARMA, called 

autoregressive spectrum estimation, to the data. Suppose the data can be modeled by an 

ARMA(p, q) with a white noise and variance εt and σ2. Then, one can for instance, first estimate 

 
19 A composite number is formed by multiplication of two positive integers, it is a prime number or 1, hence 

it also a positive integer with at least one divisor other than 1 and itself. Hence, 14 is a composite number 

because it is mutple of 2*7, while the prime numbers 2 and 3 are not.  
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the AR (1) parameters for yt=c+𝜙yt-1+𝜀t, by maximum likelihood, and insert the𝜙 estimates into 

the 𝑠𝑌(𝜔) formula for ARMA (p, q), we examined this approach to a full ARFIMA model 

estimation in chapter 9, see also exercise Q9.4.  

The alternative approach is to assume that 𝑠𝑌(𝜔) will be close to 𝑠𝑌(λ) with {𝜆𝑗} as lag window 

weights when 𝜔 is close to, or in the ‘neighborhood’ of, λ. This assumption is the basis of 

nonparametric or kernel estimation. The assumption implies an estimation approach based on 

a weighted average of the values of 𝒔�̂�(𝛌)for values λ in the neighborhood around 𝜔 with the 

weights depending on the distance between values λ and 𝜔. Let 𝜔𝑗=2 𝜋𝑗/𝑇; the implication is that 

�̂�𝑦ϒ
(𝜔j)= ∑ 𝑘(ℎ

𝑚=−ℎ 𝜔j+m,  𝜔j). �̂�𝑦 (𝜔j+m)      (15.5.1) 

Where m is the distance between λ and ω in the vicinity of ω, h is a bandwidth parameter indicating 

how many different frequencies are considered as helpful to the estimation of 𝑠𝑌(𝜔𝑗); the kernel 

𝑘(𝜔j+m, 𝜔j) indicates how much weight each frequency receives; the kernel weights sum up to 

unity: 

∑ 𝑘(ℎ
𝑚=−ℎ 𝜔j+m,  𝜔j) = 1 

One method is to make k(𝜔j+m,  𝜔j) proportional to [h +1 - |m|], then one can show, see Hamilton 

section 6.3, that  

∑ [ℎ
𝑚=−ℎ h +1 - |m|]=(h +1)2 

Since the weights must sum up to unity, the suggested kernel is  

k(𝜔j+m,  𝜔j)= 
ℎ +1 − |𝑚|

(ℎ+1)2
       (15.5.2) 

and the estimator (15.5.2) becomes  

�̂�𝑦ϒ (𝜔j)= ∑ [
ℎ +1 − |𝑚|

(ℎ+1)2
]ℎ

𝑚=−ℎ . �̂�𝑦 (𝜔j+m)      (15.5.3) 

For instance, if h=2, the estimation by (15.5.2), with m=4, 5, 6, leads to 

�̂�𝑦ϒ (𝜔j)= 
1

9
�̂�𝑦 (𝜔j-2) +

2

9
�̂�𝑦 (𝜔j-1)+ 

3

9
�̂�𝑦 (𝜔j)+ 

2

9
�̂�𝑦 (𝜔j+1)+ 

1

9
�̂�𝑦 (𝜔j+2). 

 



 245 

We learned that periodogram is asymptotically unbiased but has a large variance. If one 

employs an estimate based on averaging the periodogram at different frequencies, that will reduce 

the variance but at the cost of some bias; the severity of the bias depends in part on the bandwidth. 

Nonparametric results are shown to be sensitive to the choice of h. Taking a wider “window”, or 

bandwidth introduces larger bias; therefore, the choice of h should consider both efficiency and 

bias; this is sometimes called the variance-bias trade-off. The variance smoothing procedure 

employed in nonparametric spectrum estimation will tend to lower peaks and troughs. The 

recommended guide is to plot a spectrum estimate using different bandwidths and then select the 

most plausible by subjective judgment.  

 

15.6 Semi-parametric periodogram estimators  

Chapter 9 outlined the parametric ML estimator for a ARFIMA model that requires the estimation 

of the full model, that is of both the short-run and the long-run lag parameters using �̂� estimate of 

the fractional differencing long-run parameter of a time-series. We also noted the ARFIMA 

process is a square-summable with a d <1 fractional order of integration and autocovariances that 

decays hyperbolically compared to the ARIMA process with d=0 or d=1 order of interation and 

absolutely-summable autocovrainces that decays expentntially or geormeterically. The absolute 

summability implies square-summability, but the reverse is not true, and the difference in the slow 

dying out of the lag effects is what accounts for long memory of the ARFIMA process. If the short 

memory lags are relatively marginal and the main interest in a time-series analysis is in estimating 

the long memory fractional parameter d, we can estimate the long-run dynamic effects of the series 

without specifying the full data generating process by the estimation of semi-parametric 

periodogram. Here we examine three semi-parametric estimators commonly employed in 

regression estimation of the periodogram.  

The GPH test, see Geweke and Porter-Hudak (1983), employs a semiparametric log 

periodogram regression to evaluate d, estimated to fall in the [- 0.5, 0.5] interval, without any 

specification of the short-run structure. The GPH estimate of the fractional memory d of series 

using Xt from  

(1 - L)d Xt =𝜀𝑡 
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where 𝜀𝑡is mean zero stationary and continuous spectral density f𝜀 (𝜆)>0. The �̂� is computed over 

the fundamental frequencies to obtain the long run factional parameter by application of the least 

squares 

log(lx(𝜆s)= �̂� + �̂� log|1 - 𝑒𝑖𝜆𝑠 |2 + 𝜈𝑥      (15.6.1) 

with the fundamental frequencies { 𝜆s=
2𝜋𝑠

𝑛
, S=1, . . . ,m, m< n}. We define the discrete Fourier 

transform (DFT) and the periodogram as    

𝜔x(𝜆s)=
1

√2𝜋𝑛
∑ 𝑋𝑡𝑒

𝑖𝑡𝜆𝑠𝑛
𝑡=1        (15.6.2) 

lx(𝜆s)= 𝜔x(𝜆s) 𝜔x(𝜆s)
*        (15.6.3) 

where * indicate differencing and xt= log|1 − 𝑒𝑖𝜆𝑠|, and m is the number of regression Fourier 

frequencies. The least squares estimate results in  

�̂� = 0.5
∑ 𝑥𝑠𝑙𝑥(𝜆𝑠)

𝑚
𝑠=1

∑ 𝑥𝑠
2𝑚

𝑠=1
         (15.6.4) 

The semiparametric regression slopes are the estimates of the series power spectrum in the 

neighborhood close to zero frequency. If only the band contains a few ordinates, the slope is based 

on a small sample, affecting accuracy; if the band contains too many observations, the medium 

and high-frequency cycles of the spectrum will contaminate the estimate. Though the GPH is 

usually based on power=0.5, its robustness is checked at 0.40-0.75 range of power values.   

Phillips (1999) notes that the GPH test does not include the case of d=1 in the range of its 

power values, and it is inconsistent when d >1, with a tendency to be asymptotically biased toward 

unity. The paper proposed to modify the GPH estimate of �̂� to take account of the distribution of 

d with d=1 as the null hypothesis. The modification is based on an exact representation of the DFT 

in the unit-root case. Phillips shows the distribution of modified �̃� follows 

√𝑚(�̃� − 𝑑) →𝑑 𝑁(0,
𝜋2

24
) 

In the limit, �̂�=d=1 is consistent for values of d around unity, as with the GPH in the stationary 

case. With this modification, a semiparametric unit-root test against a fractional alternative is 

obtained from  
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Zd = 
√𝑚 (�̃�−1)

𝜋/√24
 

using the standard normal distribution critical values, consistent against both d< 1 and d> 1 

alternatives. 

Another fractionally integrated estimator that generally tends to perform better that the 

above is the Robinson (1995) multivariate semi-parametric estimate of the long memory parameter 

d(g) for a set of G time-series, y(g), g=1, and G with G ≥ 1.  The Robinson estimator obtains the 

d(g) parameter estimate for each time-series from a single log-periodogram regression that allows 

different slope and intercept for each series. This formulation permits a multivariate model to test 

if different time series have a common differencing parameter, though the model is also applicable 

to a single time-series; the estimator also allows for a sizable fractioning of the original sample 

size.  

Let Xgt stand for a G-dimentional vector for g=1, . . . , G, then the Robinson periodogram 

of  Xgt is presented as 

lx(𝜆s)= (2𝜋𝑛)−1| ∑ 𝑒𝑖𝜆𝑠𝑛
𝑡=1 |2, g=1, . . . , G.     (15.6.5) 

The restriction that some of the dg are equal can be derived from the least squares estimated 

covariance matrix of the coefficients.  Exercise 15.7 for an application of the three estimators.     

 

15.7 Some Applications of Spectral Analysis 

Example 1-Alaska air temperature. Figure 15.3 shows examples of three time series with different 

cyclical behavior; time-series on the left, their spectra on the right. These are typical of common 

empirical cyclical time-series, they are intended, together with their corresponding spectra, as 

examples to aid interpretation of an estimated spectrum, and decide when the application of 

spectral analysis is likely to be most helpful. In the top panel, the series shows cyclical behavior 

over different periods, namely, peaks for a period around 60, and also fluctuations over the entire 

period, indicating the spectrum is concentrated on different frequencies. In the middle panel, the 

series has more oscillations than the top series, and the largest variation, around the period (1, 50), 

never reoccurs in the subsequent periods. The latter dominates the series, an indication the 
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spectrum has more concentration on the lower frequency, a pattern also examined further in two 

examples below. In the bottom panel, the series demonstrates a strong seasonal pattern. Its 

spectrum on the right shows two modes; this series is an aggregation over two or more frequencies.   

 

Figure 15.3 three time-series (right) and their spectra (right) 

Figure 15.4 shows an example of air temperature series at Alaska. As expected, from the time plot 

of this series, it is obvious that the seasonal effects are dominant and such a deterministic 

component account for a very large amount of the total variation. The top panel shows a large peak 

at frequency of one cycle per year, and that spectrum analysis is really unnecessary with such clear 

pattern of seasonality. If a series contain strong trend or seasonality, then it is good practice to 

remove the variation from the data before the application of spectral analysis. The middle panel 

the Alaska air spectrum with the seasonal variation removed; now the variance is concentrated at 

low frequencies, indicating either a trend or short-term correlation as in a first-order positive AR 

process. A trend effect such a global warming is relatively small compared to other effects; hence 

the AR process seems more likely for this series. However, the corresponding periodogram in the 

bottom shows a pattern of very quick oscillations up and down that is not helpful in interpreting 

the properties of the data. This is evidence that the periodogram should be smoothed to obtain 

consistent spectrum estimation. Removing trend and seasonality is a simple example of 

prewhitening, that is , of construction a series closer to  one with white noise error, an attempt to 

have a linear transformation of the series in order to have a relatively flat spectrum that is easier 

to estimate than one sharp peaks and troughs.     
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Figure 15.4 Spectra of Average monthly air temperature in Alaska: top raw data, middle 

seasonally adjusted data; bottom the periodogram of the seasonally adjusted data. 

Example 2- US Manufacturing output time-series. Figure 15.5 (F.5-F.8) shows a plot of the Fed’s 

from Jan. 1947 to Nov. 1989 seasonally unadjusted monthly index. The Us economy experienced 

recession in 1949, 1954, 1958, 1960, 1970, 1974, 1980, and 1982 roughly as a year-long periods 

of contraction in production; the data also shows strong seasonality; for example, production 

always falls in July and rises in August.  The sample periodogram is shown in Fig. 6, this is a 

display of �̂�𝑦 (𝜔j) as a function of j where 𝜔𝑗=2 𝜋𝑗/𝑇. The contribution to the sample variance of 

the lowest-frequency components (j near zero) is several times bigger that the contributions of 

economic recession or seasonal effects, as it is clear from the upward trend of the raw data in Fig. 

5 Moreover, the definition of the population spectrum by (15.1.4) assumes a covariance-stationary 

process, this is clearly not the case in Fig. 5. One possibility is to use differencing instead and 

analyze the monthly growth rate defined by 

Xt=100.[log(yt) – log(yt-1)]       (15.7.1) 

Figure 15.5: 

F.5 US output 47:1-89:1     F.6 Periodogram of F.5     F.7 spectrum of F.5          F.8 year-by-year F.7 
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 Fig. 6 suggests low-frequency components are the main determinants of the sample 

variance of y.  Fig. 7 displays the population spectrum of X by eq. (15.5.3) using h=12. The 

interpretation of Fig. 7 plot is easier in terms of the period of a cyclic function rather than its 

frequency, i.e. the period for the frequency of a cyclic 𝜔 is 2 𝜋/ 𝜔. Thus,  𝜔𝑗=2 𝜋𝑗/𝑇which 

corresponds to a period of 2 𝜋/ 𝜔𝑗=T/j. Given the sample size of T=513 observations, and the 

appearance of the first peak in Fig. 7 around j=18, the corresponding cycle has a period of 

513/18=28.5≈ 2.5 years and roughly corresponding to the 1949 recession. Such cycle effects are 

sometime called a business cycle frequency and the area under the hill describe how much of the 

variability in monthly growth is due to economic recession. The second peak in Fig. 7 occurs at 

j=44 and corresponds to a period of 513/44=11.7 months, a 12-month cycle associated with 

seasonal effects. The subsequent four peaks with periods 6, 4, 3, and 2.4 months, respectively also 

appear to be picking up seasonal and other deterministic effects.  

 Since the US manufacturing usually falls temporary in July with negative growth rate and 

move in the opposite direction to rise gain in August with positive growth rates, the seasonality in 

tis case induces negative first-order serial correlation and other calendar effects in the series xt 

estimated by (28) that may account for the high frequency peaks in Fig. 7. An alternative is to 

employ year-to-year growth rates in order to remove the calendar effects 

Xt=100.[log(yt) – log(yt-12)]      (15.7.2) 

The estimated sample spectrum for this series is plotted in Fig. 8. With this detrended series, all 

the variance left is attributed to components related to the business cycle frequencies. 

 

Readings 

For textbook discussion, see Hamilton (1994, chapter 6), Chatfield and Xing (2019, chapters 6 and 

7). Ganger and Joyeux (1980) proposed fractional differencing for slow converging time series; 

Geweke et. al. (1983) developed the standard spectral regression model, Sowell (1992) and 

Robinson (1995) provide, respectively, parametric and semi-parametric spectral estimators.  

 

 



 251 

Chapter 15 Spectral Analysis Exercises 

Non-Empirical questions 

Q15.1 According to De Moivre’s theorem, given a particular 𝛚j frequency cycle,  

𝑒−𝑖𝑤𝑗 = cos(𝛚j) -i.sin(𝛚j).  

a.Provide a proof of this equality,  

hint: Use Euler’s formula 𝑒𝑖𝜃=con𝛉+i.sin𝛉 

Q15.2 Use (15.1.10)-(15.1.11)  to drive the spectrum for 

a. MA (1) process 

b. AR (1) process 

c. ARMA (p, q) process 

Q15.3 Download manemp2.dta, the data are for US manufacture employment.  

a. Plot the differenced series (mean set as -0.206), estimate AR(1) by arima, then obtain its spectral 

density and comment on its shape.  

Q15.4_Download icsal.dta, US unemployment insurance claims. 

a. Plot differenced series, estimate AR(1)by ARIMA , then its spectral density and its plot, and 

comment on its shape.  

Q15.5 Download mloa.dta, monthly carbon dioxide level data. 

a. Estimate ARIMA nested in ARFIMA first, then compare that outcome with spectral density 

estimates for SR & LR, comments on the fractional parameter estimate.  

Q15.6 Download mumps2.dta, series on number of mumps infections in NYC. 

a. Fit ARFIMA model to test if 1st differencing is over-differenced. 

Q15.7 Download FTA.dta, S&P 500 series. 

a. Estimate semiparametric log periodogram by GPH estimator, and by Phillips estimator to 

test for d=1. 

b. Repeat the estimation by Robinson multivariant estimator  

c. Compare the performance of the three estimators in a. & b. with regard to slow converging 

series.  
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Chapter 16 State-Space Models and Kalman Filter 

Introduction 

The State-Space models provide a flexible approach to many time-series models in economics and 

dynamic analysis of time-series in a single framework. They cover the basic least square regression 

and many dynamic models without restricting estimation by requirements such as stationarity, or 

limit application to process with long memory. Often the variable of interest may be some 

unobservable, or forecasting can only be made with stationary series. Many applications require 

more: employment of a long-memory model. The S-S approach offers algorithms that can make 

inference about the unobservable using estimations made by observable data without the need to 

restrict the estimator to be stationary, dependent on long-memory models. It is a flexible approach 

that presents many different time-series models  based on the least squares as a special case.  

Data for a time-series variable come with error; the true variable called signal is 

contaminated with noise due to measurement error or unobservable effects. State-Space (S-S) 

approach models attempt to obtain estimates and prediction of the true states of the variable from 

the observable changes of the time-series, that is by separating the series measurement of the signal 

from the noise. It assumes the signal is a linear combination of a set of unobservables, called state 

variables, that describes them in a ht vector of states at time t. The noise can be due to 

measurement error in data, or from unobservable effects. 

 

 

An obvious S-S application would be modelling the consequences of measurement error. For 

example, in a study of the behavior of the ex antie real interest rate (nominal rate – expected 

inflation= it – πe
t ), we have to deal with an unobservable state variable since anticipated inflation 

rate data are unavailable.  

16.1 Basics of Space-State  

Let the scalar state variable be ξ t= it – πe
t - μ; where μ stands for the average ex ante rate. Now 

assume an AR(1) rate equation as  

ξ t+1=∅ ξ t +𝑣𝑡+1       (16.1.1) 



 253 

Given the observations on the ex-post rate (nominal it – actual inflation πt), we can write it as 

it – πt = (it – πe
t ) + (πe

t - πt)=  μ + ξ t + wt    (16.1.2) 

where inflation forecast error by economic agents is wt=(πe
t - πt). (16.1.2) is econometrically 

observable if agents forecast optimally, then wt should be uncorrelated with its own lagged values 

and with the real ex ante interest rate. In this example (16.1.1) is the state equation and (16.1.2) 

the observation equation, and interest lies in obtaining prediction error for a forward estimate of 

the unobservable expected rate of inflation at t conditional on information up to t-1.  At other times, 

we may be interested in using all measured data up to the current period to obtain an estimate of 

an unobservable effect backward, an event many decades ago. As an example, suppose an 

unobserved scalar Ct represents the state of the business cycle that affects i different observed 

macroeconomic variables with idiosyncratic components χit uncorrelated with the macro variables 

yit that change with Ct. Then Ct and each χit described by univariate AR(1) processes form a  

[(n+1) by 1] state vector as ξ t = [Ct χ1t χ2t … χnt]’; the yit observation equation parameter estimates 

in this model describe the sensitivity of the ith series to the business cycle at different points in the 

past affected by the unobservable state equations for the ξ t vector, see section 16.7 and empirical 

exercise 16.5.  

A S-S system always has one set of equations based on the observations and another set of 

equations for unobservable factors that affect the observations. A simple univariate S-S system 

consists of two equations, one describing the state equation (S.E), also known as the transitional 

equation, another the measurement equation (M.E), also known as the observation equation: 

Xt = h/
t ϴt +  ηt   η ~  N(0, σ2

η)   M.E   (16.1.3) 

ϴt= Gt ϴt-1 + ωt  ω ~ N(0, σ2
ω)   S.E   (16.1.4) 

Xt in the M.E is defined as a function of the (m by 1) transposed h’t vector of m unknown ϴt states, 

or a matrix of such states if more than 1 state in a series, namely, the trend and seasonal states. A 

state is usually assumed directly unobservable, but we assume we know how it changes over time, 

namely, seasonally, or as AR (1) process with the Gt matrix of state parameter estimates, although 

S-S still remains useful in obtaining time-series predictions even if the state vector is known. We 

further assume that the error term in (16.1.3), known as irregular variation of the M.E equation, 
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has zero mean and homoscedastic variance; it is also normally distributed with no serial correlation 

and with a known coefficient Gt (m by m) matrix. The error term in (16.1.4) is multivariate normal 

with zero mean and a known variance-covariance matrix Wt, and no serial correlation, and no 

correlation between ηt & ωt, Co(ηt , ωt)=0 . We use the observations on Xt to make inferences about 

ϴt by regression. We note that if ωt is independent of ϴt , ϴt-1 , ϴt-2 …, then the AR(1) process of 

(16.1.3) ensures that ϴt depends on ϴt-1 but not on earlier values; that is, the  {ϴt} sequence has 

the Markov property20 that employs only ϴt-1 to update the sequence. The model can be generalized 

to a vector of Xt by making h/
t a matrix of corresponding size. The states estimates are not constant 

over time, but change in a predictable manner, namely, with an increasing time-trend, or 

seasonally. S-S estimation allows both equations and error terms to change as long as we can 

assume that they have known distribution functions; when these are constant, then the S-S (16.1.3)-

(16.1.4) model reduces to the linear OLS model. The S-S models are frequently employed because 

of the flexibility they offer in modeling a large class of time-series behavior by decomposing a 

time-series into its trend, seasonal and irregular components; application requires that the S-S 

decomposition be additive or, if multiplicative, must be expressed in logarithmic terms. More 

generally, the S-S observation equation must be a linear function of the state variables, without 

restricting the model to be constant over time, in order to allow local changes such as trend and 

seasonality to be estimated using the S.E equation. Next, we examine several common time-series 

models in S-S form to display its flexibility and advantages. 

 

16.2 State-Space Models of Time-series 

i. The random walk plus noise (RWN) model  

Suppose the M.E., Xt is a function of a single unobservable random walk local level μt at t: 

Xt = μt  +  ηt    η ~  N(0, σ2
η)   M.E   (16.2.1) 

μt = μt-1  + ωt   ω ~ N(0, σ2
ω)   S.E   (16.2.2) 

In this case, the state vector ϴt, consists of a single unobserved level variable μt, ϴt is a scalar, in 

addition h/
t is the vector of unkown states and Gt , the unobebservables states parameter matrix, 

 
20 The Markov chain property assumes that the probability distribution at time t+1depends only on the 

state of the system at t. 
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are also scalars both equal to unity; the important σ2
ω / σ

2
η , known as the signal-to-noise ratio, 

determines the properties of the S-S model. The model reduces to the constant-mean OLS because 

with σ2
ω =0; μt becomes a constant. The RWN is called the local level or the steady model, and μt 

is an equivalent “intercept” term that changes with t, analogous to the least squares intercept with 

the important difference of change over time. Taking the first differences of Xt to turn it into a 

stationary series, the simple (16.2.1) would have the same autocorrelation function as MA (1) and 

is thus an alternative to ARIMA (0, 1, 1) with a non-stationary component q=1. For an example of 

the RWM model (16.2.1), consider the level disturbances are all fixed on ωt =0 for t=1, . . . , n, 

then  we have : 

For t=1   x1=μ1+ η1 

   μ2 =μ1 + ω1= μ1 + 0= μ1 

      t=2   x2=μ2+ η2= μ1+ η2 

   μ3 =μ2 + ω2= μ2 + 0= μ1 

     t=3   x3=μ3+ η3= μ1+ η3 

   μ4 =μ3 + ω3= μ3 + 0= μ1 

and so on. Therefore, the local level model (16.2.1) simplifies to x1=μ1+ ηt, with ηt ~ NID (0, σ2
η). 

Typically, the unobserved state variable at time t=1 is unknown. However, we can use an estimated 

value for it obtained, conditional on some initial values from t=i earlier periods to start the 

iterations. Such starting values of the unknown state parameters and their variances are called 

diffuse initialization; in practice the initial diffuse values are set equal to the unconditional mean 

and variance.   

i) Local level trend or Linear growth model 

Suppose we expand (16.2.1) by a second unobservable variable, time changing trend, also referred 

to as a drift term; now we have a three-equation S-S model with two transitional equations as each 

unobservable has its own equatin: 

Xt = μt +  ηt    η ~  N(0, σ2
η)       

μt = μt-1 + βt-1 + ωt1  ω1 ~ N(0, σ2
ω1)    (16.2.3) 

βt = βt-1 + ωt2   ω2 ~ N(0, σ2
ω2)  
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where the state vector is ϴ’t =( μt , βt)  as the local level and the local trend, with the latter excluded 

from the measurement equation; comparing to (16.1.1) and (16.1.2) shows in this case h/
t  = (1, 0) 

and Gt =[
1 1
0 1

], both constant over time. For example, if we fix all disturbances in ωt1=0 and 

ωt2=0, then we have 

For t=1   x1=μ1+ η1 

   μ2 =μ1 + 𝜷1+ ω11= μ1 + 𝜷1 + 0= μ1 +𝜷1  

   𝜷2=β1+ ω12= β1+0= β1 

      t=2   x2=μ2+ η2=μ1+ 𝜷1+ η2 

   μ3 =μ2 + 𝜷2+ ω21= μ1 + 2𝜷1 + 0= μ1 +2𝜷1   

   β3 =β2 + ω22= β2 +0 = β1 

     t=3   x3=μ3+ η3=μ1+ 2𝜷1+ η3 

   μ4 =μ3 + 𝜷3+ ω31= μ1 +3𝜷1 + 0= μ1 +3𝜷1  

   𝜷4=β3 + ω32= β2 +0 = β1 

and so on. Then, the linear trend model simplifies to x1=μ1+ 𝜷1gt+ ηt, with ηt ~ NID (0, σ2
η) where 

the time predictor variable gt =t -1 and t=1, . . , n, and μ1 and 𝜷1 are the initial values of the level 

and the slope. If ωt1 and ωt2 have zero variances, then we have a deterministic global linear trend 

model based on the full system of equations (16.2.3), (not very likely); or a local linear model if 

the trend is allowed to change; or the trend is a constant but the local level changes.  

ii) The Local level trend with seasonality or the basic structural model.  

We can also incorporate seasonal effects in the (16.2.1)-(16.2.2) model; St denotes the number of 

seasons in a year; the full system of equations (16.2.4) has the state vector with S+2 components 

and four additive error terms: 

 Xt = μt + Sit + ηt   η ~  N(0, σ2
η)       

μt = μt-1 + βt-1 + ω1,t  ω1 ~ N(0, σ2
ω1)      

        (16.2.4) 

βt = βt-1 + ω2,t   ω2 ~ N(0, σ2
ω2)  
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St = - ∑ 𝑆𝑠−1
𝑗=1 t-j + ωt,3  ω2 ~ N(0, σ2

ω3)  

where σ2
i=Var(ωti) for i=1, 2, 3 since the seasonal effects are over S-1 periods. This model is called 

the basic structural model; it can be extended to incorporate explanatory variables.  

The models examined so far are known as time-invariable S-S models because the coefficients 

change over time in a predictable manner. Let us now look at the models that allow coefficients to 

change randomly.   

iii) S-S models with time-varying Coefficients 

The measurement equation for this model is 

Xt = μt + ∑ 𝛽𝑡𝑗𝑥𝑡𝑗
𝑘
𝑗=1  + ηt       (16.2.5) 

For one predictor variableβt=βt1, the S-S model is in the form  

Xt = μt + βtxt + ηt    η ~  N(0, σ2
η)       

μt = μt-1 + ωt1   ω1 ~ N(0, σ2
ω1)    (16.2.6) 

βt = βt-1 + ωt2   ω2 ~ N(0, σ2
ω2)  

Setting ωt1 & ωt2 equal to zero, we have 

For t=1   x1=μ1+𝜷1x1 + η1 

   μ2 =μ1 + ω11= μ1 + 0= μ1  

   𝜷2=β1 + ω12= β1+0= β1 

      t=2   x2=μ2+𝜷2x2 +η2=μ1+𝜷1x2+ η2 

   μ3 =μ2 + 𝜷2+ ω21= μ2 + 0= μ1   

   β3 =β2 + ω22= β2 +0 = β1 

     t=3   x3=μ3 +𝜷3x3+ η3=μ1+𝜷1x3+ η3 

   μ4 =μ3  + ω31= μ3 + 0= μ1  

   𝜷4=β3 + ω32= β3 +0 = β1 

and so on. Then, the linear time-varying coefficient linear simplifies to  

x1=μ1+ 𝜷1x1+ ηt, with ηt ~ NID (0, σ2
η). 
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Therefore, the S-S models for all cases (16.2.3)-(16.2.6) redice to the least squares model. Of 

course, if the elements of the states’ residuals are constant and the model reduces to the least 

squares, there will be no gain in S-S applications. The benefits from the S-S presentation come 

from covering a much larger class of models wth non-constant residuals of which the least squares 

is a very special case. The S-S models that allow the parameters to change are called the time-

variable State Space models.  

 

16.3 Kalman Filter 

The Kalman (1960) filter comes from the field of control engineering employed in spacecraft and 

more recently in the technology used in Covid-19 to trace infection transmission. It is a recursive 

algorithm that can predict the motion of a body based only on its last observation. In the time-

series models discussed so far, the state components are estimated using all past observations, [y1, 

y2, …, yn-1] to make a current period forcast, but obtaining the next period prediction of the time-

series by its dynamics are based only on the past period t-1 predicted MSE; this a priori estimation 

is called the Kalman prediction. However, the Kalman filtered state also estimates the state 

vector using all observations including the current period t.  Thus, the estimation of the state vector 

is carried out by performing two passes through the data. First, a forward pass from t=1, . . , n 

using the Kalman filter  is processed. This recursive method has a key Markov chain property that 

obtains optimal predicted values of the unobservable states of a time-series at time t based solely 

on the t-1 past observed values [y1, y2, …, yt-1], see chapter 17 for a more detailed discussion of  

Markov process. The backward pass from t=n, . . ., 1 uses a recursive algorithm known as state 

and disturbance smoothers applied to the output of the Kalman filter employing all measured 

observations, including the current period. The main purpose of state and disturbance smoothing 

is to obtain estimates for the values of state and disturbance vectors at time t, combining all 

available information. In the text below, we focus mainly on the forward Kalman filter algorithm; 

smoothing is briefly discussed at the end, see also empirical exercise Q 16.3.  

In applications of the unobservable Kalman filter, it is the predicted values that are of 

special interest. Let at be the Kalman filter state of a series at time t, then the central formula of 

the recursive Kalman filter updating process is: 
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at+1 = at + Kt (yt - z’tat)+νt+1      (16.3.1) 

where zt is the state vector that when applied to the single state local level model simplifies to 

at+1 = at + Kt (yt - at)+νt+1      (16.3.2) 

Because the Kalman forecasting procedure relies on the previous step estimates, it can also be 

viewed as a Bayesian forecasting method that updates the (a prior) probability distribution of θt as 

a new observation becomes available to provide a revised (posterior) distribution.   

Figure 16.1 illustrates how (16.3.2) works, by singling out the last three predicted values 

for a hypothetical series. Here the observed and filtered series only contain the level (residual) 

observations over 1978-83. 

Figure 16.1 

yt 

 

At time t=1980, the current value of the filtered level a1980 is based on all past observations  

[y1970, y1971, …, y1979]. If the current value yt is unknown, for instance, missing, then its best 

available prediction is given by simply moving the filtered state forward unchanged (horizontally 

by a unit (1981-1980), that is the best prediction of the filtered state at time (t+1) is at+1 = at since 

a1981 = a1980. However, given a known value for y1980, the Kalman process feeds this information 

into the Kalman filter (16.3.2) and the discrepancy (yt - at) (the vertical arrow in Fig. 3.1) is used 
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to update the estimate for a1980 to produce at+1 = a1981. In other words, the 1981 prediction is 

qualified by the discrepancy (yt - at); in this case, the negative discrepancy (yt - at) < 0 results in a 

decrease in the filtered level. The next step of (16.3.2) similarly moves the predicted value for at+1 

= a1982 forward unchanged if the current value is unknown, horizontally by one unit of time, but 

if the discrepancy between y1981 and y1982 is known (the vertical arrow in Fig. 3.1), then the filter 

further modifies the step-one ahead prediction to obtain a new predicted update for the series; in 

this step (y1982 - a1982)>0, so the curve turns upward. Because each predicted state is treated as the 

true value to be updated by accounting for new information as it becomes available, the last 

prediction error, already containing the last rounds of correction, will thus be smaller than the 

previous two steps, resulting in fast stabilization of predicted values. As the update at t+1 is based 

on the discrepancy at t, Figure 16.1 demonstrates that the update at at+1 always lags at by one 

observation. We call νt= (yt - at) one-step-ahead prediction errors, also denoted as innovations 

since they add new information to the process of updating the prediction.   

The important factor in the Kalman filter process is the value of Kt in (16.3.2), the local 

level scalar in this case. The value of Kt determines how much the value of νt is allowed to affect 

the state estimate at time(t+1), therefore, the larger Kt at t, the greater νt impact at (t+1). Kt is called 

the Kalman gain; in effect it weighs the uncertainty of the state based on the past observations [y1, 

y2, …, yt-1] relative to that in the new observations yt. If the measurement uncertainty is large and 

the estimate uncertainty is low, that is, variance of ηt in (16.1.3) relative to variance of ωt in 

(16.1.2), then the value of Kt will trend to zero, namely, a bigger weight to the estimate and a 

smaller one to the measurement, while, if the reverse is the case, the value of Kt will trend to one, 

preventing yt big impact on the next period’s state. The Kalman gain varies between 0 and 1; the 

Kalman gain of 0.5 indicates that the two types of uncertainties have equal weights. In the simple 

example of Figure 3.1, value of Kt=Pt/Ft where Pt is the filter state estimated error variance. and 

Ft, the variance of one-step-ahead prediction error νt, though in general, the denominator consists 

of both variances, see below. The prediction error variances, PEV, are monotonically decreasing 

with time and converge quickly, especially. with time-invariant models, namely, those without 

explanatory variables; thereby simplifying the Kalman filter computations in a RWN steady S-S 

model. Recall that forecasting is impossible with either AR or MA processes unless they are 

stationary while the steady S-S model forecast are based on the random walk unit-root time-series; 

the forecast values dependen only on the last period information, and thereffor are valid even with 
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a MA short-memory process. Otherwise, the Kalman PEV can still provide useful forecast analysis 

of the dynamics of a time-variable S-S models if the distribution function of a changing variable 

is known.   

The important feature of the Kalman filter is its rapid stabilization. The forecasts quickly 

converge to the series’ true values because of decreasing Kalman filter predicted error variance in 

successive rounds; this is demonstrated in the following graphs in Figure 16.2. From the visual 

explanation, we see a simple process starting from the initial conditions used to model (say, a 

constant rate of change) to make a prediction, then take a measurement to learn of the forecast 

error, then update the prediction by ‘blending prediction and residual to finally obtain an optimal 

estimate with smaller variance.  

At the outset (first left box), the initial predicted value and variance are usually set equal 

to the unconditional mean and variance; the next step treats these as the true value;  the forecast 

error obtained from the difference between the true values and that of the  linear least squares one-

step ahead forecast based on the minimization of MSE, that is (z1-z2), is then used to correct the 

forecast in step two (second right box). The third and sebsequent steps treat the last corrected 

forecast as the true value and corrects the estimated forecasts the difference (zt-zt-1)as shown in 

(third left box). Therefore, the mean and variance at the third step with will be smaller thatn those 

from both of the previous steps; explaining why the Kalman filter quickly stablizes by converging 

on its long run path.   

In order to emphasize the predictive error ability of the Kalman filter Markov chain 

property, Figure 16.3 illustrates an empirical application of the local level (random walk unit-root) 

S-S model of the Kalman filter process to a time-series of annual road fatalities in Norway over 

1970-2005.; the top panel are the predicted errors νt, while the bottom panel shows their variances 

Ft. The important point in both Figures 3.1 and 3.2 is that while one-step-ahead forecast are based 

on all data t=1, 2, . . . , T, the forecast updating employs only the last t-1 information based on the 

Kalman Markov chain property.   
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Figure 16.2 

   

   

   

 

Figure 16.3 
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16.4 The Kalman Filter implementation 

The implementation of the Kalman process involves three stages: the initialization stage, the 

prediction stage and the updating stage. Since the state vector values are unknown, some initial 

values must be provided to start the iterated estimation process, either from previous studies, or by 

using some of the starting values of T=1, 2, …, t. In practice, the initial state values are assumed 

normally distributed with the mean and variance usually set equal to the unconditional moments 

of the variables. We assume their disturbances are uncorrelated with the initial state variables and 

also uncorrelated with each other.   

Next comes the prediction stage. Suppose we have  �̂�𝒕−𝟏 as the ‘best’ linear estimate of the 

state variable 𝜽𝒕−𝟏 of a univariate time series up to time (t-1); the ‘best’ estimate in this context 

means the minimum least squares mean square error estimate of (MSE) at time t 21; we have also 

the estimator’s (m by m) variance-covariance matrix, denoted by Pt-1. The Kalman filter first 

prediction stage relates to forecasting 𝜽𝒕 from data up to (t-1). Using equation (16.1.4), and given 

ωt is unknown at time (t-1), the obvious estimator 𝜃𝑡 and its variance-covariance Pt are: 

 𝜃𝑡 | 𝑡−1=Gt  𝜃𝑡−1       (16.4.1) 

Pt|t-1 = GtPt-1G
T

t + Wt      (16.4.2) 

(16.4.1)-(16.4.2) are the Kalman prediction equations. The estimator modifies the estimates as 

the new information on Xt at time t become available. Since the best estimator of Xt at time (t-1) 

for a vector of unkown states, is given by h/
t 𝜃𝑡|𝑡−1, the prediction error at t is given by: 

νt= Xt – hT
t 𝜃𝑡 | 𝑡−1       (16.4.3) 

We can then use νt to update, or qualify the prediction equations estimates of 𝜃𝑡 & Pt.  

The following equations represent the next updating stage: 

 𝜃𝑡−1= 𝜃𝑡 | 𝑡−1+ Kt νt      (16.4.4) 

(16.4.4) expresses the optimal estimated forecast as (forecast – K times forecast error), see first 

line of Figure 2, third left panel. The forecast variance is then   

 
21 Recall from chapter 6 that the least squares estimate of MSE is an estimate of an in-sample, one-step 

ahead forecast error.  
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Pt = Pt|t-1 - Kt h/
t Pt|t-1       (16.4.5) 

(16.4.5) measures the variance of the forecast estimate equal to (variance of forecast prediction – 

K*variance of forecast prediction), see second line of Figure. 2, third left panel. These variances 

are measures of the estimated and measurement uncertainties discussed earlier.  Kt is a weighting 

scheme called the Kalman gain matrix. Based on variance as a measure of uncertainty, Kalman 

gain compares predicted and measured uncertainties based on their calculated averages by 

K=variance of predicted state error/(variance of predicted state error+ variance of measurement estimate), 

or  

Kt =Pt|t-1 ht /[ hT
t Pt|t-1 ht + σ2

η ]      (16.4.6)  

Since optimal forecasts are usually obtained from the minimization of MSE, but since the latter is 

based on variance, (16.4.6) is also expressed in terms of the MSE of state and measurement 

predictions. (16.4.4)-(16.4.6) are the Kalman updating equations; estimation of the gain matrix is 

the most important part of the Kalman filter procedure.  

The Kalman stages can be generalized to consist of multiple state and measurement 

equations and include observable explanatory variables. We first state the S-S representation by 

the state vector, and state and measurement equations with the above assumptions required to 

obtain consistent estimates, and then develop optimal forecasts by linear least squares regression.  

16.5 Representation of State-Space Equations 

A S-S system are represented by two sets of equations   

ξ t+1 = F ξ t + νt+1        (16.5.1) 

yt = A’xt + H’ξ t + wt                               (16.5.2) 

Assumptions to ensure consistent linear estimates with optimal MSE: the disturbances are white 

noise and uncorrelated at all time lags; the initial state vector is uncorrelated with the disturbances:   

E(𝑣𝑡  𝑣′𝜏)= Q for t=τ; 0 otherwise,  

E(ωt  𝜔′𝜏)= R for t=τ; 0 otherwise;  

E( 𝑣𝑡  𝜔 ′𝜏)= 0 for all t & τ 
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These assumptions further imply that: 

E( 𝑣𝑡  𝜉 ′𝜏)= 0 for all t=1, 2, . . . , T  

E( 𝜔𝑡 𝜉 ′𝜏)= 0 for all t=1, 2. . . . , T 

where F, A/, H/ are parameter matrices of dimensions (r by r), (n by k), and (n by r) with n=vector 

of observed variables, xt is a (k by 1) vector of exogenous and predetermined variables (hence 

therefore, can include lagged yt), r=number of state variables. We can also write the state equation 

(5.1) in terms of νt-i by backward substitution as: 

ξ t=vt + F vt-1+ F2 vt-2+ . . . + Ft-2 v2 + Ft-1 ξ t for t=2, 3, . . . ,T. 

For example, (16.5.1)-(16.5.2) applied to the (16.1.1) S.E and (16.1.2) M.E modeling the rate of 

interest behavior, we have r=n=1, F=φ,  yt=it – πt , A/xt = μ , H=1 and wt =(πe
t - πt).   

We summarize the Kalman filter forecasting steps: 

a. For the initial iteration we obtain unconditional mean and variance of ξ 1 from  

ξ 1|0=E (ξ 1). The corresponding MSE is 

P 1|0=E{ [ ξ 1 - E (ξ 1)] [ ξ 1 - E (ξ 1)]’ } 

b. We then iterate on and update the MSE Pt|t by  

Pt|t = Pt|t-1 – Pt|t-1H(H/Pt|t-1H+R)-1 H/Pt|t-1 and obtain the forecast using all information 

up to period t from  

 𝜉𝑡+1|𝑡=  𝜉𝑡|𝑡−1+ { [FPt|t-1H(H/Pt|t-1H+R)- 1 ] (yt – A/xt – H/ 𝜉𝑡|𝑡−1) }  (16.5.3) 

where  �̂�𝒕+𝟏|𝒕 stands for the best linear forecast of the unobservable state, Pt|t-1 provides the MSE 

of this forecast, R=E(ωt 𝜔′𝜏) stands for the (r by r) matrix of the ME error terms, and the expression 

inside the squared brackets expresses the Kalman gain of the forecast filter K above; and since the 

last term in squared brackets is the prediction error of (16.5.2), K acts to weight minimize the 

forecast error, that is, the difference between the two sides of (16.5.2). The forecasts of yt and its 

MSE of (16.5.2) are given by: 

�̂�t|t-1 =�̂�( yt|xt, 𝐘𝑡−1) 

As the vector of states from the S.E, 𝜉t|t-1=(ξ t |Yt-1), is a part of the M.E: 
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�̂�( yt|xt, ξ t) = A/xt + H/ 𝜉𝑡      (16.5.4) 

and given that the cross product terms, E[wt(ξ t – ξ t \ t-1)
/]=0, drop out, covariance of yt simplifies 

to  

E[(yt  –�̂�t|t-1) (yt – �̂�t|t-1))
/ ]= (H/Pt|t-1H+R)     (16.5.5) 

where 𝐘𝑡=(𝑦𝑡,
′  𝑦𝑡−1

′ , . . . , 𝑦1
′ ; 𝑥𝑡,

′  𝑥𝑡−1
′ , . . . , 𝑥1

′); See the appendix for more details.  

Despite its apparent complication, the general S-S form reduces to very simple equations 

in some special cases. For example, take the Kalman filter for the steady-state RWN model that 

has just one state variable 𝜽𝒕 and the current level μt. It can be shown that as t → ∞ Pt  → constant, 

the Kalman filter form above reduces to the simple relationship  

 �̂�𝑡= �̂�𝑡−1+ α νt        (16.5.6) 

where, in this particular case of the RWN, the smoothing constant α becomes some function of the 

signal-to-noise ratio σ2
ω / σ2

η (see exercise 16.1); not to be confused with the Kalman gain ratio 

whose denominator consists of state and observable variances. (16.5.6) is in fact simple 

exponential smoothing. When σ2
ω approaches zero and μt becomes a constant, α tends toward zero, 

as expected; while if σ2
ω / σ2

η becomes large, then α tends toward one. However, in general, the 

predicted errors are weighted by the Kalman gain matrix Kt; this is shown by a second example, 

the linear regression model for the S-S time-varying coefficients in (16.2.4)-(16.2.5) model. In this 

case, the vector Wt in (16.5.2), or ωt in (16.2.5), is zero, and the regression coefficients are constant, 

Gt becomes an identity matrix and Pt|t-1= Pt-1. Then, based on their unconditional values, the 

predicted errors and the Kalman filter prediction error equations above reduce to 

 νt= Xt – h/
t 𝜃𝑡−1       (16.5.7)  

There are major practical advantages to the Kalman filter. First, its calculations are 

recursive, and based on the whole history of a time-series; while its prediction employ all past 

information up to and including period t=1, 2, . . .,n-1, the updating of that prediction is based on 

the previous period error forecast t-1 and therefore requires only the latest t-1 observation because 

of its Markov chain transition property. The process does not require long memory, nor is 

costrained by a short-memory processes; in that regard it compares favorably with AR, MA or 

ARIMA processes. Secondly, the models in S-S form provides forecasts without imposing 
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stationarity restrictions on the series; for example, it can provide forecasts with the unit-root, local 

level RWN, by contrast, we cannot obtain linear forecasts for AR or MA, or ARIMA models without 

stationarity. Third, the filter quickly changes over time because each corrected forecast is treated 

in turn as a new, true value, whose next period prediction produces a forecast error, therefore 

variance correction is applied to already variance corrected forecasts. Finally, the procedure can 

handle missing data since the best forecast for a missing value is its own last lagged value.  

16.6 Maximum Likelihood Parameter Estimation 

Based on Gaussian errors for the S-S equations errors, the conditional distribution of yt is given by 

yt|xt, yt-1 N ~[A/xt + H/ 𝜉 t-1), (H/Pt|t-1H+R)-1]     (16.6.1) 

A sample log likelihood can be constructed from (16.6.1). The value of log-likelihood is maximized 

in state space methods by simultaneously minimizing the S.E prediction errors 𝒗𝒕and the M.E 

variance Ft, unlike classical regression that minimizes the observation errors or disturbances st and 

their variances, σ2
η.  

Once the prediction errors 𝒗𝒕 and their variance Ft are obtained, they play a key role in the 

parameter estimation of the State- Space system. The Kalman filter was formulated in terms of 

linear projections, consequently, their forecasts are optimal in linear models; however, if the initial 

state and the innovations are multivariate Gaussian, then the filter forecasts are optimal among any 

functions of yt & xt. The univariate state space models for the(initial) diffuse log-likelihood are 

defined as by: 

log 𝐿𝑑 = −
𝑛

2
log(2𝜋) −

1

2
∑ (𝑙𝑜𝑔𝐹𝑡 +

𝑣𝑡

𝐹𝑡
)𝑛

𝑡=𝑑+1      (16.6.2) 

where d is the number of diffuse initial elements of the state. The multivariate space state log-

likelihood function is written as, see Commandeur and Koopman(2007, p.89):  

ℓ = −
𝑇𝑛

2
log(2𝜋) −

𝑇

2
∑ (𝑙𝑜𝑔|𝐹𝑡

−1| −
1

2
𝑒𝑡

′𝐹𝑡
−1𝑒𝑡)

𝑇
𝑡=𝑑+1     (16.6.3) 

 Under normality, (16.6.3) is optimal in an MSE sense, after initialization and ignoring the first set 

of observations. This representation of the likelihood is particularly convenient for estimating 

regressions involving moving average terms.      
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The Kalman filter applies to state space models that are linear in parameters. In many time 

series such as multivariate seasonal models, parameters are non-linear; even Gaussain residual 

when appied to non-linear transformation is no longer a Gaussian distribution. It is possible to 

apply a filter, known as the extended Kalman filter, by making a locally linear approximation to 

the Kalman filter model. In order to extend the filter, we employ first-order Taylor series expansion  

f (y)=f (�̅�)+f /(y)(y - �̅�). This extended filter performs effectively if the function is locally linear, that 

is, providing a good approximation using only first-order Taylor expansion, but it would not work 

well if the extended filter functions are not locally linear. However, even if the disturbances are 

non-Gaussian, we can still apply the Kalman filter to obtain linear projections employing the quasi-

maximum likelihood QMLE that does not require normality, but still yields consistent estimates 

of the elements of F, Q, A, H and R that are asymptotically normal.   

16.7 Smoothing Kalman Filter 

The Kalman filter examined so far is an algorithm for calculating a forecast of the state vector ξt 

as a linear function of previous observations. In some applications, the value of unobservable state 

ξt may be of interest in its own right, rather than for its use in forecasting. For example, we may 

wish to know the state of an unobservable factor at a historical time t by making an inference about 

the value of ξt based on the full set of measured and forecasted information; such an inference is 

called the Kalman smoothing estimation and denoted by: 

𝜉 t|T=�̂�(ξ t|yt)          (16.7.1) 

The MSE associated with (16.7.1) smoothed estimation of the matrix of ξt is  

Pt|T=E{[ ξ t – 𝜉t|T)] [ ξ t – 𝜉t|T)]/}       (16.7.2) 

A well-known application of the smoothing Kalman filter is the study of the business cycle by 

Stock and Watson (1991) mentioned earlier. For example, based on GDP observation from 1954 

through 1990, we can estimate the value ξ t took in 1960 using all measured data on ξt and xt through 

date T. Therefore, unlike forecasting, smoothing estimation depends on the full set of measured 

data up to and including t.        

16.8 Filtering and Decomposition of Simple Time Series 
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There are different approaches to filter/decomposing a time series into seasonal and cyclical trends 

when the models consist of a relatively simple structure. We conclude with a brief consideration 

of the (1977) Hodrick-Prescott (HP) and Hamilton (2018) time-series decomposition. 

Suppose the observed time series yt is composed of a trend component, y*
t and a cyclical component 

ct. The HP method isolates ct from yt by minimizing:  

Miny*1, y*2, . . . , y*T =[∑ (𝑦𝑡 − 𝑦𝑡
∗) +𝑇

1 λ∑ (∆2𝑦𝑡+1
∗ )2𝑇−1

𝑡=2 ]     (16.8.1) 

where λ is a smoothing parameter usually chosen by trial and error; as λ approaches 0, the trend 

component becomes equivalent to the original series, while as λ goes to ∞, y*
t becomes a linear 

trend, since the second differenced term (∆2𝑦𝑡+1
∗ )=0. The HP filter identifies the cyclical 

component by trading off the trend against the desired degree of smoothness, and for quarterly 

observations it is set to 1,600, based on prior beliefs about the magnitudes of changes in the cyclical 

component, relative to the trend component.  

Hamilton (2018, RES) highlights three specific drawbacks to the HP filter. First, (16.8.1) 

induces spurious cycles, or spurious dynamic relationships; specifically, the filter induces spurious 

cycles when applied to differenced stationary time series, which is a leading example of a typical 

economic time series, and best described by a random walk. Second, (16.8.1) has an end-of-sample 

bias, as filtered values in the middle of the sample and at the end are very different. This can lead 

to substantial biases in small samples. Third, the common choice λ = 1, 600 is ad hoc; the 

formulation requires (16.8.1) error terms be white noise, which are clearly unrealistic assumptions. 

Estimating such an optimal λ, Hamilton (2018) finds that, for a series of macroeconomic and 

financial variables, it should be close to 1 rather than 1,600. 

Hamilton (2018) proposed an OLS regression of the observed non-stationary time series, 

yt , at date t + h on a constant and its four most recent values at  date t, namely: 

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt-3 + vt+h      (16.8.2) 

The stationary, or cyclical, component is then obtained from the residuals,  

𝑣t+h = yt+h − �̂�0 − �̂�1yt − �̂�2yt−1 −  �̂�3yt−2 − �̂�4yt−3.     (16.8.4) 

(16.8.4) has the advantage that we do not have to know the true data-generating process before 

applying it, and it results in stationary residuals provided the fourth differences of the original time 
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series are stationary. In the case of quarterly data, Hamilton suggests employing h = 8 for analyses 

concerned with business cycles and h = 20 for studies interested in credit or financial cycles. 

However, empirical evidence from (8.4) applications show it shares some of the drawbacks of 

(16.8.1). It amplifies cycles that exceed the duration of regular business cycles, namely, longer 

than eight years, and completely mutes certain shorter-term fluctuations. Due to this, (16.8.4) falls 

short of reproducing the chronology of US business cycles. Nonetheless, this amplification of 

cycles may be helpful for some applications. For instance, a credit-to-GDP gap derived with 

(16.8.4) indicates that imbalances prior to the global financial crisis started earlier than reported 

by the official credit-to-GDP gap, which is derived using the HP filter. In general, (16.8.4) 

produces more robust cycle estimates than the HP filter, which can be important if policy measures 

draw upon these estimates. 

Still, research interest on filtering of macroeconomic time series that go beyond the simple 

linear and time invariant structural ARIMA models may not produce identical forecasts between 

the structural and reduced form parameters. Then, such complex models can be more easily 

analyzed in the state-space form with the state of the system representing the various unobserved 

components such as trend and seasonal.  

 

Appendix-Driving the Kalman Filter: key steps 

The following lists the key steps in the derivation of the Kalman filter for the S-S representation 

given by (16.5.1)-(16.5.2); for the step-by-step derivation, see Hamilton (1994), section 13.2.    

Stage 1-diffuse initialization: this is just ξ0=E(ξ1) , the unconditional mean of ξ and its 

MSE is Pt|0=E{[ ξ 1 – E(ξ 1)] [ ξ 1 – E(ξ 1)]
/} 

Stage 2-Forcasting yt 

�̂�(ξ t|xt, Yt-1)= �̂�(ξ t|Yt-1)= 𝜉 t| t-1      (16.51a) 

since xt-1 contains no information beyond t-1. Use that to predict yt:  

yt|t-1 = A/xt + H/�̂�(ξ t|xt,Yt-1)= A/xt + H/ξ t | t-1     (16.5.2a) 

Hence,  
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yt − �̂�t-1=[H/(ξ t − 𝜉 t|t-1)+wt]        (16.5.3a) 

The expectation of squared (16.5.3a), after dropping the cross-products terms, results in: 

MSE=E[(yt − yt|t-1) (yt − yt|t-1)/]= E[H/(𝜉 𝑡 − 𝜉 t|t-1 )
/H]+[ 𝑤 𝑡 𝑤 𝑡  / ]=[H/Pt|t-1H+R] (16.5.4a) 

Stage 3-Updating forecast ξ t+1:  

 𝜉𝑡|𝑡=  𝜉𝑡|𝑡−1+ Pt|t-1H (H/ Pt|t-1H+R)- 1(yt – A/xt – H/ 𝜉𝑡|𝑡−1)   (16.5.5.a) 22 

The MSE of (16.5.5.a) for the updated projection, Pt|t, is: 

Pt|t=E[(ξ t – 𝜉 tt)(ξ t  𝜉 t|t)/]= Pt|t-1  – Pt|t-1H(H/ Pt|t-1H+R)- 1H/ Pt|t-1   (16.5.6.a) 

skeeping a number of steps, see Hamilton, p.389. 

Stage 4-Producing forecast ξ t+1 by (16.5.1.a):  

 𝜉𝑡+1|𝑡= F𝜉𝑡|𝑡−1+ [FPt|t-1H(H/Pt|t-1H+R)- 1](yt – A/xt – H/𝜉𝑡|𝑡−1)  (16.5.7.a) 

The coefficient matrix in (16.5.7.a) is the Kalman gain matrix Kt:   

Kt=FPt|t-1H(H/ Pt|t-1H+R)- 1       (16.5.8.a) 

Kt weights or corrects the forecast error (last term in round brackets) to obtain optimal forecasts.  

 

Readings 

For textbook discussion, see Hamilton (chapter 13) and Chatfield and Xing (2019, chapter 10); 

Commandeur and Koopman (2007, chapters 10 and 11). The Kalman (1960) proposed filter 

comes from control engineering; Burmeister and Kent (1982) illustrates an application to 

economics.  

 

 

 
22 (16. 5.5.a) and (16.5.6.a) are derived from the matrix presentation of the optimal forecast for P(Y3|Y2, 

Y1), and its associated MSE given in Hamilton (p.99) given by equations [4.5.30] and [4.5.31]. Here 

corresponding equations are obtained with Y3= ξt, Y2=yt, and Y1=(𝑥𝑡
′, 𝑦𝑡

′)’ in (16.5.4.a). 
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Chapter 16 State-Space & Kalman Filter Exercises 

Q16.1 Show that  

a. the local level S-S model is equivalent to an ARIMA (0, 1, 1) model when xt is first differenced;  

b. Show that the following local linear trend S-S model is equivalent to an ARIMA (0, 2, 2) model 

when xt is second differenced.  

Q16.2  a. Write out the MA (1) process in a state-space representation.   

b.  Explain if the following is a valid state-space representation of MA (1) process? 

[
𝜀𝑡+1

𝜀𝑡
]= [

0 0
0 0

] [
𝜀𝑡

𝜀𝑡−1
] + [

𝜀𝑡+1

𝜀𝑡
] S.E with r=2 states 

yt – μ=[1  θ][
𝜀𝑡

𝜀𝑡−1
]   M.E with n=1   

Q16.3 Consider the following special case of the linear growth model 

Xt=μt + nt 

μt= μt-1+βt-1 

βt= βt-1+ωt 

with nt & ωt iid with zero means and respective variances σ2
n & σ2

ω. Show that the initial least 

squares estimator of the state vector at time t=2, in terms of the observations X1 & X2, is  

[�̂�2 �̂�2]=[X2, X2 -X1] and variance-covariance matrix P2=  [
σ𝑛

2 σ𝑛
2

σ𝑛
2 2σ𝑛

2 + σ𝜔
2 ]. 

Q16.4 Download nile.dat, data on the  flow of water in the Nile  river at Aswan. 

a. Estimate a S-S, AR(1) model of RWMN for the water flow data  

b. Post estimation: predict  a smoothed local level trend using a diffuse KF filter by rmse, 

predict standardized residuals, plot each graph and then both in a single plot. 

c. Compute RMSE for prediction and forecasts predictions plus 50% CI,  and graph the result. 

Q16.5 Download manufac.dat on US capacity utilization.  
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a. Estimate a model in S-S form a VARMA (1, 1) process in differenced “capital” and “hours”. 

Obtain the sspace error-form syntax for estimation, use a Model of a S-S ARMA (1, 1).  

b. Post estimation: predict the differenced capital utilization by one-step ahead and the 

standardized residuals by KF 

Q16.6 Download dfex.dt, a US macro data set. 

a. Estimate an S-S form of a dynamic-factor model (AR model augmented by unobserved 

factors) that follows an AR(2) process with no exogenous variables; with AR(1) disturbances 

in the observable equation.   

b. Estimate one-step ahead forecasts for D.unemp and graph the result. 
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Chapter 17 Bayesian Econometrics Analysis 

Introduction 

Bayesian Econometrics has gained much intertest as a result of greater availability of computer 

power. The Bayesian approach to econometrics requires the specification of a probabilistic model 

of prior beliefs about the unknown parameters. The presentations in this and the next chapter are 

intended as an introduction of this growing area of econometrics.  

i. Bayesian Probability  

The basic innovation of the Bayesian theorem is revising the probability of an A event when new 

information about it becomes available by modifying its probability conditional on event B. The 

conditional probability of event A, given event B is 𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
, that is the conditional 

probability of A is equal to the ratio of its joint probability to its marginal probability. We also 

note that we obtain marginal probabilities of two events (that is, the probability of each A and B 

event separately) from the sum of their joint probabilities: when events A & B are conditional on 

the event M, then P(M)=P(A|M)+P(B|M). Bayes’ theorem expands this definition by accounting 

for the effect of the initial probability called the prior probability, on the final probability, called 

the posterior probability. In general, after substituting for joint probability of an event i from the 

definition of the conditional, for n mutually exclusive events, we have  

𝑃(𝐴𝑖|𝐵) =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

𝑃(𝐴1)𝑃(𝐵|𝐴1) + 𝑃(𝐴2)𝑃(𝐵|𝐴2)+. . . +𝑃(𝐴𝑛)𝑃(𝐵|𝐴𝑛)
 

where the denominator expresses the marginal probabilities as the sum of the given of joint 

probabilities. Simplifying by writing the sum of the marginals in the denominator as P(B) and 

dropping the  index for A, we can write the Bayes’ theorem as 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
  

For a discrete random variable y and parameter of interest ϴ, the Bayes theorem is written as 

𝜋(𝜃|𝑦) =
𝑃(𝑦|𝜃)𝜋(𝜃)

𝑃(𝑦)
         (17. 1.1) 
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where  𝑃(𝑦) = ∫ 𝑃(𝑦|𝜃)𝜋(𝜃)𝑑𝜃 for the probability mass function (p.m.f) of P(.); division by 

𝑃(𝑦) makes 𝜋(𝜃|𝑦) a normalized probability distribution; that is, integration with respect to ϴ 

results in ∫ 𝜋(𝜃|𝑦)𝜋(𝜃)𝑑𝜃 =1.In general, for a continuous random variable y, we write 

𝜋(𝜃|𝑦) =
𝐿(𝑦|𝜃)𝜋(𝜃)

𝐿(𝑦)
      (17.1.2) 

where  𝑓(𝑦) = ∫ 𝐿(𝑦|𝜃)𝜋(𝜃)𝑑𝜃 for the probability density function (p.d.f) of y(.).  

Here the first term of the numerator, L(y| ϴ) called the likelihood function, is a function of ϴ once 

the data are known. As a simple example, take a coin experiment y tossed three times with results 

as (H, T, H), so y (1, 0, 1). If ϴ is the probability of a head, we have the likelihood function as the 

product of conditional probabilities given by: 

P(1, 0, 1)=P(1| ϴ) P(0| ϴ) P(1| ϴ)= ϴ (1- ϴ) ϴ = ϴ2 (1- ϴ) 

The second term in the numerator of (17.1.2), 𝜋(𝜃) is the prior density, a measure of our belief 

about the distribution of ϴ before seeing the data y; the prior distribution usually depends on 

parameters, known as hyperparameters, provided by the researcher. Finally, the denominator f(y) 

normalizes the posterior, and when it is independent of ϴ, it is convenient by convention, to write 

it as proportional to the likelihood function times the prior distribution, and the likelihood is 

commonly written as f (y|𝜃): 

𝜋(𝜃|𝑦)  ∝  𝑓(𝑦|𝜃)𝜋(𝜃)      (17.1.3) 

When the posterior is written without the inessential constant terms as it is here, then (17.1.3) is 

known as a density kernel.  

Examples of Bayes Theorem  

a. Discrete variable: Bernoulli/Binomial (with n fixed). The likelihood function for a single 

toss of affair coin is P(yi| ϴ) = 𝜃  𝑦𝑖 (1-𝜃)1− 𝑦𝑖, implying P(yi =1| ϴ) = ϴ and P(yi =0| ϴ) 

=(1 - ϴ). Now generalizing this to the case of n independent tosses of a coin, then we have 

P(y1, , . . . ,   yn | ϴ) = 𝜃  𝑦1 (1-𝜃)1− 𝑦1 . . . 𝜃  𝑦𝑛 (1-𝜃)1− 𝑦𝑛 

  = ∏𝜃  𝑦𝑖  (1 − 𝜃)1− 𝑦𝑖  

 = 𝜃  ∑𝑦𝑛 (1-𝜃)𝑛− ∑𝑦𝑛      (17.1.4) 
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The completion of (17.1.4) with this likelihood function requires a specification of a prior 

distribution function that meets the constraint that 0 ≤ ϴ ≤ 1; a usual option is the beta distribution, 

beta (α, β), with its prior function defined as  

𝜋(𝜃) =
𝛤(α+ β)

𝛤(α)Γ( β)
  𝜃𝛼−1 (1-𝜃)𝛽−1 ; 0 ≤ ϴ ≤ 1 and α, β > 0 

where 𝛤(. ) stands for the beta function and α, β are hyperparameters; note also that the first term 

in  the ratio is free from ϴ and hence becomes a part of the constant of proportionality in (17.1.3). 

The beta prior function of varies in the 0 ≤ ϴ ≤ 1 range and its distribution is defined by its first 

two moments, see Greenberg (2013), p. 226, as 

𝐸(𝜃) =
α

𝛼 +  β
 & 𝑉𝑎𝑟(𝜃) =

αβ

(𝛼 +  β)2(𝛼 +  β + 1)
 

The beta distribution moments make clear that the shape of the function depends on the values 

assumed hyperparameters; indeed, one reason for the choice of the beta distribution is that with 

different values provided by the researcher for β relative to α, the function can generate many 

different shapes. Thus, as shown in Figure 17.1, this prior can capture beliefs that ϴ is centered at 

one-half, or it trends toward zero or one; highly concentrated or highly dispersed; and can have 

bimodal when β0= α0 = 0.5.  

 

Figure 17.1 Beta distribution for various vales of α & β 
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Another very important reason for choosing the beta prior is that in combination with (17.1.4), the 

likelihood function with Bernoulli distribution with a beta (α, β) prior, the posterior ia also beta 

distribution. We can write (17.1.1) in this case as 

𝜋(𝜃|𝑦)  ∝  𝑓(𝑦|𝜃)𝜋(𝜃) 

∝  [𝜃  ∑𝑦𝑛 (1-𝜃)𝑛− ∑𝑦𝑛] [𝜃𝛼0−1 (1-𝜃)𝛽0−1] 

∝   𝜃  (𝛼0+∑𝑦𝑛 )−1(1- 𝜃)(𝛽0+𝑛− ∑𝑦𝑛)−1 

Bearing in mind that the normalizing constant of the beta distribution (the first term in the ratio 

above) has been into the constant of proportionality because of its independence from ϴ, the 

remaining terms produce 𝜋(𝜃|𝑦) that is in the form of a beta distribution with parameters 

 𝛼1 = (𝛼0 + ∑𝑦𝑖)& 𝛽1 = (𝛽0 + 𝑛 −  ∑𝑦𝑖). This is an example of a conjugate prior with the 

posterior in the same family of distribution as the prior distribution; examined further below. We 

can now easily compute the mean of the beta posterior distribution: 

𝐸(𝜃|𝑦) =
α1

α1+β1 
 = 

 𝛼0+∑𝑦𝑖

𝛼0+𝛽0+𝑛
 

If we substitute for �̅� = (
1

𝑛
)∑𝑦𝑖 and can re-write the last line in the equivalent form as (since the 

numerator of the first ratio and the denominator of the second ratio, both from the first term, cancel 

out) 

𝐸(𝜃|𝑦) = (
𝛼0+𝛽0

𝛼0+𝛽0+𝑛
) 

α0

α0+β0 
 +(

𝑛

𝛼0+𝛽0+𝑛
)�̅�     (17.1.5) 

(17.1.5) expresses as a weighted average of the prior mean,  
α0

α0+β0 
 , and the maximum 

likelihood estimator (MLE) �̅�, the value of 𝜽 that maximizes P(y| ϴ). (17.1.5) reveals an important 

feature the Bayesian method of inference: as the sample size n increases the weight given to the 

prior mean tends toward zero while that on the MLE one, implying 𝐸(𝜃|𝑦) →  �̅�. The prior loses 

importance and the features of the posterior distribution come to resemble increasingly those of 

the likelihood function as the latter dominate the final distribution with increases in the sample 

size. This outcome is demonstrated in Figure 17.2 with 𝛂𝟎 = 𝛃𝟎 = 2 and n=10 or 50 and  ∑𝑦𝑖= 3 

or 15.  
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Figure 17.2 Prior, likelihood and posterior for the coin-tossing 

 

b. Continuous random variable 

Normal distribution is the workhorse of econometrics and provides a frequent model for applied 

Bayesian analysis, it is therefore selected as a Bayesian example of a continuous random variable 

yi.  

i. Normal Distribution  

Once again, the aim is to obtain a posterior by (17.1.2), given a normal likelihood and prior 

distribution function.  

Suppose we specify a likelihood function for (17.1.2) with a random variable y ~ N (θ, σ2) where 

θ is known but the scalar σ2 is unknown; the joint density of y, given a random sample of 

(y1, . . . , yN) is: 

𝐿(𝑦|𝜃) = ∏ (2𝜋𝜎2)−1/2𝑁
𝑖=1 𝑒𝑥𝑝{−(𝑦𝑖 − 𝜃)2/2𝜎2} 

= (2𝜋𝜎2)−𝑁/2𝑒𝑥𝑝{−∑ (𝑦𝑖 − 𝜃)2/2𝜎2𝑁
𝑖=1 } 

   ∝  𝑒𝑥𝑝{ 
𝑁

𝜎2  (�̅� − 𝜃)2} 

where �̅� = (
1

𝑛
)∑𝑦𝑖 and we use  ∑ (𝑦𝑖 − 𝜃)2 =𝑁

𝑖=1 (𝑦𝑖 + �̅� − �̅� − 𝜃)2 = ∑ (�̅� − 𝜃)2 +𝑁
𝑖=1

 ∑ (𝑦𝑖 −  �̅�)2 𝑁
𝑖=1 . Note that multiplicative terms not involving 𝜃 are absorbed in the constant of 

proportionality and dropped from the last exponential line (as is the constant proportional 

denominator of (17.1.2)). Next, we need to specify a prior function. Given a normal likelihood 
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function, an analytically convenient choice would be a normal prior, θ ~ Ɲ (𝝁 ,𝜏2), since then the 

product of two normally distributed functions in (17.1.2) also results in a normally distributed 

posterior. More specifically, we say such a normal prior is a conjugate of the normal posterior, a 

large value of 𝝉 reflects a more uncertain prior than a small value. Here we demonstrate that the 

resulting posterior is in the same normal density function form as the prior distribution. The prior 

density function is  

𝜋(𝜃)= (2𝜋𝜏2)−1/2𝑒𝑥𝑝{−(𝜃 − 𝜇)2/2𝜏2} 

∝  𝑒𝑥𝑝{−(𝜃 −  𝜇)2/2𝜏2} 

Multiply the two functions  to obtain the posterior, after dropping the constant term 𝝅 and taking 

all terms into the exponentials; and then expand the terms inside the curly brackets: 

𝐿(𝑦|𝜃)𝜋(𝜃) = 𝑒𝑥𝑝{− 
1

(2𝜎2)
 ∑ (𝑦𝑖 − 𝜃)2𝑁

𝑖=1 }𝑒𝑥𝑝{ −
1

(2𝜏2)
 (𝜃 − 𝜇)2} 

= 𝑒𝑥𝑝{−
1

(2𝜎2)
 ∑ (𝑦𝑖

2 − 2𝑦𝑖𝜃 + 𝜃2)𝑁
𝑖=1 }𝑒𝑥𝑝{−

1

(2𝜏2)
 (𝜃2 − 2𝜃𝜇 + 𝜇2)} 

= 𝑒𝑥𝑝{
1

(2𝜎2)
 (∑ yi

2N
i=1 − 2 𝜃 ∑ 𝑦𝑖 + 𝑁𝜃2)}𝑁

𝑖=1 𝑒𝑥𝑝 {
1

(2𝜏2)
 (𝜃2 − 2𝜃𝜇 + 𝜇2)} 

Dropping the (un-highlighted) terms that do not involve θ, and combining the rest within only one 

exponent, then the expression that the exponent contains can be rearranged to collect the 𝜃2&𝛉 

terms; using 𝑁�̅� = ∑𝑦𝑖 to ease notation: 

𝐿(𝑦|𝜃)𝜋(𝜃) = − 
1

2
(
𝑁

𝜎2
𝜃2 +

𝑁

𝜏2
𝜃2 − 2 𝜃

∑ 𝑦𝑖
𝑁
𝑖=1

𝜎2
−  2 𝜃

1

𝜏2
𝜇) 

= − 
1

2
((

𝑁

𝜎2
+

1

𝜏2
)𝜃2 − 2 (

∑ 𝑦𝑖
𝑁
𝑖=1

𝜎2
−

1

𝜏2
𝜇)𝜃) 

𝐿(𝑦|𝜃)𝜋(𝜃) = − 
1

2
((

𝑁

𝜎2
+

1

𝜏2
)𝜃2 − 2 (

𝑁

𝜎2
�̅� −

1

𝜏2
𝜇)𝜃)      (17.1.6) 

This is now in the form of (ax2 -2bx) with 𝜃 for x where a=(
𝑁

𝜎2 +
1

𝜏2) & b=(
𝑁

𝜎2 �̅� −
1

𝜏2 𝜃); we 

can transform this by dividing through by a (so the coefficient of x2 becomes unity and that of x, a 

ratio of b/a=c, becomes a constant) into an expression of the form (x – c)2. The linear solution for 

x inside the brackets is easily compared to that of a quadratic one. The mathematical procedure to 
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carry out for this task is known as completing the square, employed when solving a quadratic 

equation directly is too complex, especially if the solutions for that equation depend on other 

quadratic equations as is the case here. Writing the last line with the simple a & b notations, we 

have: 

𝐿(𝑦|𝜃)𝜋(𝜃) = − 
1

2
(𝑎𝜃2 − 2 𝑏𝜃) 

= − 
𝑎

2
(𝜃2 − 2 

𝑏

𝑎
𝜃) 

Adding + and – terms of (
𝑏

𝑎
)2 to this equation leaves it unchanged but since neither of them depends 

on 𝜇, we can simply drop one of them (un-highlighted) as a part of the constant of proportionality   

𝐿(𝑦|𝜃)𝜋(𝜃) = − 
𝑎

2
(𝜃2 − 2 

𝑏

𝑎
𝜃 + 

𝑏2

𝑎2
− 

b2

a2) 

∝ {− 
𝑎

2
(𝜃2 − 2 

𝑏

𝑎
𝜃 + 

𝑏2

𝑎2)} 

Now, the expression inside the curved parentheses is in the form of (x2 - 2xc + c2 )=(x – c)2; 

replacing the terms of the exponent, we have 𝑒𝑥𝑝{− 
𝑎

2
(𝜃 + 

𝑏

𝑎
)
2

}. This reveals the posterior 

distribution of 𝜇 when the prior is also normal, also has a normal distribution since its mean of b/a 

and a variance of 1/a moments involve normally distributed terms; solving (17.1.6) for its first two 

moments:    

𝜃|𝑦 ~ 𝑁(𝜇𝑛, 𝜎𝑛
2) 

𝜎𝑛
2 = 

1

𝑎
= 1/(

𝑁

𝜎2 +
1

𝜏2)      (17.1.7) 

𝜇𝑛= 
𝑏

𝑎
= 𝜎𝑛

2(
𝑁

𝜎2
�̅� −

1

𝜏2
𝜇)       (17.1.8) 

The posterior mean 𝝁𝒏 is a weighted sum of the prior mean μ and the sample mean �̅� with weights 

that depend on the precision of the likelihood via 
𝑵

𝝈𝟐
 and on the prior via 𝝉𝟐. In Bayesian analysis, 

variability is measured by the precision parameter, defined as the reciprocal of the variance; the 

posterior precision 𝝉−𝟐 is the sum of the sample precision of �̅�, namely 
𝑵

𝝈𝟐
 , and the prior 



 281 

precision 1/𝝉𝟐, therefore, precision increases by pooling the sample and the prior information. If 

the prior information is imprecise, so that 1/𝝉𝟐 is small, the prior has little effect in generating the 

posterior, and the sample information dominates the posterior as the increase in the sample size 

makes 
𝑵

𝝈𝟐 relatively larger. This outcome is similar to asymptotic normality except that the 

Bayesian parameter estimation depends on the values of the sample at hand rather all possible 

values of the parameter.  

 Figure 17.3 shows an example with  𝝈𝟐=100, the prior sets μ=5 and 𝝉𝟐=3, and N=50 with 

sample mean of �̅�=10. Then the likelihood is N[10, 2], the prior N[5, 3], and from (17.1.7) & 

(17.1.8), we have 𝝈𝟐∗ =[1/(50/100)+1/3)]=1.2004 & μ*=1.2004*[(50*10/100)+5/3)]=8.06, 

therefore N[8, 1.2]. These are the densities plotted in Fig. 1.3 that shows the posterior mean lies 

between the prior mean and the sample mean, whereas the posterior has a smaller variance than 

the variance of both the prior and the likelihood. 

 

Figure 17.3- Bayesian analysis for mean parameter of normal density: plot of normal likelihood 

(right), normal prior density (left), and resulting posterior density (center) 

We also apply completing the square technique to obtain the key moments (17.1.7) and (17.1.8) 

for the posterior distribution of 𝝁 based on a normally distributed prior conjugate, but the same 

results with slight variations are obtainable if the prior function such as normal-inverse gamma 

conjugate prior, belongs to a family of normal distribution, see Greenberg section 4.3. With a 

multivariate normal distributions, the exponent has its quadratic form as (y – 𝝁) ∕  ∑-1(y – 𝝁) and 

(17.1.7) and (17.1.8) are represented as functions of vectors and matrices, see Greenberg, A.1.14. 

ii.Specification of prior 
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Bayesian analysis requires specification of the data generating process (dgp) 𝒇(𝒚|𝜽)& the prior 

𝝅(𝜽); the former is frequently assumed the same as the specification of a parametric likelihood-

based model because that assumption leads to analytically tractable distribution for the posterior. 

Such tractable results often arise if the sample and prior densities and posterior distributions all 

belong to the same family of densities. An example, examined above, is, for the normally 

distributed data, and, a normal prior for the mean, results in a normally distributed posterior.  

 Table 17.1 presents some standard conjugate families; example in its first row. We note 

that the important class of gamma density includes exponential and chi-square as special cases. 

An advantage of having a posterior and prior in the same distributional class is that the posterior 

can act as a new, data-based prior for the next round of analysis. Despite such advantages it is 

important to highlight that a conjugate prior is equivalent to imposing a restriction and as such 

must be justified. The main difficulty of Bayesian analysis is the specification of a prior 

distribution, the principal of contention with the classical analysis. One option is to employ a prior 

that has little impact on the posterior another, is to use an informative prior if strong prior 

information is available, and yet an intermediate alternative is to relay on hierarchical priors that 

involve other uncertain priors. Table 17.1 illustrates some of the commonly employed conjugate 

functional pairs.  

Table 17.1-Leading Examples of Conjugate Families 

 

iii. Noninformative Priors  

 One possibility exists for a uniform prior that attaches the equal weight to all possible values of 

the parameter of interest 𝜃:  𝜋(𝜃)=c and c > 0. The problem is that if the 𝜽 values are unrestricted, 

or unbounded, then the necessary integration does not sum up to one, and the prior becomes an 

improper density:  𝜋(𝜃)𝑑𝜃 = ∞, though you can also have an improper integral if the integrant 
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has discontinuity, namely, 1/a-1 with a=1. Usually, the corresponding posterior distribution can 

also be improper, though not in all cases. Moreover, the uniform prior is not invariant to re-

parameterization. For example, given 𝜃 > 0, another alternative density for y would be 𝛾 = ln 𝜃, 

and   − ∞ < 𝛾 <  ∞. If  𝜃 has a uniform prior, that is if 𝜋(𝜃)=c, then the new prior  𝜋∗(𝛾) =

𝜋(𝜃) |
𝑑𝜃

𝑑𝑦
| = 𝑐𝑒𝛾. This prior is proper and informative, since it is not constant, changing with 𝛾, 

even though its different parameterization produces an uninformative constant prior. A uniform 

prior for a random variable 𝜃 is sometimes specified as a proper prior with very large 

(uninformative) variances 𝝉𝟐, assumed distributed as N (𝜇, 𝜏2). Then, for values of 𝜃 likely to be 

supported by data for a uniform distribution, values around 0.5, 𝑒𝑥𝑝{−
(𝜇− 𝜇0)2

2𝜏2 } ≃1, the prior 

𝜋(𝜃) ≃1/2π𝜏2 becomes a constant. Thus, this approach, known as vague, flat, or diffuse prior, 

displays the same problem as the uniform distribution of not being invariant to re-parameterization.  

A widely used non-informative prior which is invariant to re-parameterization is Jeffreys’ 

prior. Jeffrey’s prior is based on the information matrix of 𝜃, that is the amount of information 

that a random variable y offers about an unknown parameter 𝜃; estimated by the MLE that 

maximizes the (conditional) log-likelihood function. Formally, the elements of this matrix are 

defined by the second derivatives of the MLE of y with respect to 𝜃; it is the expected value of the 

MLE of 𝜃 defined as  𝔗 = −𝐸[
𝜕ℒ𝑁(𝜃)

𝜕𝜃
  

𝜕ℒ𝑁(𝜃)

𝜕𝜃′  ]= a constant; and it is equal to the variance of the 

score vector of the LME ( first derivates of MLE with respect to 𝜃 , 
1

𝑁

𝜕ℒ𝑁(𝜃)

𝜕𝜃
, is called its score 

vector). The ML estimator solves the first-order condition that implies the score vector has 

expected zero value, 𝑛𝑎𝑚𝑒𝑙𝑦, 𝐸 = [
𝜕ℒ𝑁(𝜃)

𝜕𝜃
] = 0. Large values of 𝔗 mean that small changes in 𝜃 

result in large changes in the log-likelihood, suggesting 𝔗 offers a great deal of information about  

𝜃.  Jeffrey’s prior is based on the determinant of the information matrix 𝔗| 𝜃| for a vector of 𝜃 as: 

𝜋(𝜃)  ∝ 𝔗| 𝜃|1/2       (17.1.9) 

That is, Jeffrey’s prior is proportional to the variance of the scores. This prior provides the same 

information regardless of the particular parameterization or transformation of the model employed. 

To verify the rule in the scalar parameter case, consider transformation γ=h(𝜃),  

we have 
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𝜕ℒ

𝜕𝛾
 = 

𝜕ℒ

𝜕𝜃
 . 

𝜕𝜃

𝜕𝛾
 and 

𝜕2ℒ

𝜕𝛾2
 =  

𝜕2ℒ

𝜕𝜃2
 . (

𝜕𝜃

𝜕𝛾
)2+

𝜕2𝜃

𝜕𝜃𝜕𝛾2
 

Using (17.1.9) and taking the expectation of this equation (& noting that 
𝝏𝓛

𝝏𝜽
 =0 by the property of 

likelihood scores)  

𝔗(𝛾) =  𝔗(𝜃)(
𝜕𝜃

𝜕𝛾
)2  

Given that  |
𝝏𝜽

𝝏𝜸
| is a constant, we obtain a new prior that is again proportional to the variance of 

the new information matrix as:  

|𝔗(𝛾)|1/2 = |𝔗(𝜃)|1/2|
𝜕𝜃

𝜕𝛾
| 

However, although Jeffrey’s prior is invariant to re-parameterization, it is not always a proper 

prior. As an example, suppose y ~ N (μ, σ2), and consider three cases. First, μ is unknown but σ2 is 

a known constant. The information index for μ is 𝔗(μ) = 𝑁/𝜃2, therefore, though proportional to 

the information variance, Jeffery’s prior becomes |𝔗(𝛾)|
1

2   ∝  𝑐, a constant. Second,  μ is known 

but σ2 is unknown. The information index for σ2 by (17.1.9) is 𝔗( 𝜎2 ) = 𝑁/(𝜃4), and Jeffrey’s 

prior is |𝔗(σ2)|
1

2   ∝  σ -2. Third, if both  μ and  σ2 are unknown; then  𝔗( μ, 𝜎2 ) =
𝑁

𝜃2 .
𝑁

𝜃4 =

𝑁2/2𝜃6, therefore, the joint prior is 𝜋( μ, 𝜎2 )  ∝  σ -3. However, if Jeffrey’s prior is applied 

separately to μ and σ2, we then have a different outcome with the variance of proportionality as 

then  𝜋( μ)  ∝ 𝑐, 𝜋 ( 𝜎2 ) ∝  σ -2 & 𝜋( μ)𝜋 ( 𝜎2 )  ∝  σ -2. The Jeffreys’ prior is improper if it has 

an unrestricted constant.  

 Finally, if the regression model has normal distribution, then a type of prior specific to that 

model is Zellner’s g-prior. This prior requires the specification of the dimension of the prior (the 

number of regression coefficients), a degree of freedom, and the variance parameter of the error 

term (see exercise Q17.4_c.)   

Summarizing, noninformative methods of prior specification are either vulnerable to the 

improper prior problem that leads to improper posterior, or to the problem of not being invariant 

to re-parameterization; they may often lead to similar values obtainable by the simpler classical 

methods.   
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iv. Bayesian linear regression with noninformative prior 

The Bayesian analysis of linear regression analysis provides a basis for general Bayesian models; 

the OLS estimator has a Bayesian interpretation as the mean of the posterior distribution in the 

noninformative prior case. Consider y ~ N (μ, σ2), with known prior constant for μ, and unknown 

prior for σ2. Extending Jeffery’s prior to the linear regression case means the prior views all values 

of regression coefficient βj, J=1, . . . , K, as equally likely whereas small values of σ2 are viewed 

as more likely. Assuming independence of β and σ2, the joint prior is : 

𝜋( μ, 𝜎2 )  ∝  1/σ 2 

First, we re-expressed the likelihood function as 

𝐿(𝛽,  𝜎2|𝑦, 𝑋) = (2𝜋𝜎2)− 
𝑁

2𝑒𝑥𝑝{
1

(2𝜎2)
 − (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)}   (17.1.10) 

∝   (𝜎2)−𝑁/2 𝑒𝑥𝑝( 
1

2𝜎2  − {�̂�′�̂� + (𝛽 − �̂� )′X′X(𝛽 − �̂� )}) 

∝   (𝜎2)−𝑁/2 𝑒𝑥𝑝 ( 
1

2𝜎2  (𝑁 − 𝐾)𝑠2 + (𝛽 − �̂� )′X′X(𝛽 − �̂� )) 

where  �̂�=( X′X) -1 X′y,  �̂�= y - X�̂� and we use squared (y - X 𝛽)=�̂� −  X(𝛽 − �̂� ) and X�̂�′=0; and 

the final line employs s2=�̂�′�̂� / (N- K). 

The combination of (17.1.10) with Jeffrey’s proportional prior leads to the posterior density as 

P(𝛽, 𝜎2|𝑦, 𝑋) ∝    (
1

𝜎2) 
𝑁/2𝑒𝑥𝑝 ( 

1

2𝜎2  {(𝑁 − 𝐾)𝑠2 + (𝛽 − �̂� )′X′X(𝛽 − �̂� )})(1/𝜎2) (17.1.11) 

∝  (
1

𝜎2) 
𝑁/2+1  𝑒𝑥𝑝 ( 

1

2𝜎2 { (𝑁 − 𝐾)𝑠2 + (𝛽 − �̂� )′X′X(𝛽 − �̂� )}) 

∝  {(
1

𝜎2)

𝐾

2
  𝑒𝑥𝑝 ( 

1

2
(𝛽 − �̂� )

′
(𝜎2(X′X)− 1)− 1(𝛽 − �̂� ))} × (

1

𝜎2)
(𝑁−𝐾)/2+1

𝑒𝑥𝑝(−
(𝑁−𝐾)𝑠2

2𝜎2 ) 

where in the third line, we use (
1

𝜎2) 
𝑁/2+1 = [(

1

𝜎2)

𝐾

2
 + (

1

𝜎2)
(𝑁−𝐾)/2

+ (
1

𝜎2)]. The first two lines 

contain Jeffery’s (1/𝜎2) proportionality, the third is the product of likelihood for �̂�=1, . . . , K, and 

the variance 𝜎2, K+1, . . . N. The conditional posterior distribution of 𝛽 is (𝛽|𝜎2, 𝑦, 𝑋), given 𝜎2, 

and that data on y, X is a K-dimensional multivariate with mean �̂� and variance (𝜎2(X′X)− 1) since 

only the first line of the final term contains 𝛽. 
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 The marginal (or marginalizing) posterior of 𝛽 is obtained by integration out 𝜎2 from the 

second line of (17.1.11) by change of variables23 to z=1/σ2 & letting α={(𝑁 − 𝐾)𝑠2 +

(𝛽 − �̂� )′X′X(𝛽 − �̂� )], c=N/2+1, and expressing the integral as ∫ 𝑧𝑐 exp(−𝛼𝑧)
∞

0
𝑑𝑧. For a given 

constant α >0 and c> - 1, using the property of exponential function integration, ∫𝑒𝑥 = 𝑒𝑥, and 

noting that σ2 in the second line of (17.1.11) is now a known constant, this yields the kernel of the 

marginal posterior distribution �̂� conditional on 𝜎2as:  

𝑃(𝛽|𝑦, 𝑋)  ∝ {(𝑁 − 𝐾)𝑠2 + (𝛽 − �̂� )′X′X(𝛽 − �̂� )}- N/2    (17.1.12) 

∝  {(1 + (𝛽 − �̂� )′(𝑠2(𝑁 − 𝐾)X′X −1)− 1 (𝛽 − �̂� )}-(N-K+K)/2sert ‘a’   ?? 

The second line is a result of a change of variables z=1/𝜎2 (obtained after division by (𝑁 − 𝐾)𝑠2) 

and integrating z, see Cameron & Trivedi (2005, p. 436). (17.1.12) is in the form of a multivariant 

student-t distribution, see Greenberg (2013), p.230, as the covariance matrix 𝑠2(X′X) −1 appears 

between the parameter estimation terms; it is centered on �̂� with (N-K) degrees of freedom, and 

covariance matrix 𝑠2(X′X) −1 multiplied (N-K) / (N-K-2). Therefore, each 𝛽j has a univariate 

student-t distribution. 

𝛽  ~  tK (�̂�, 𝑠2(X′X) −1 )       (17.1.13) 

The conditional posterior of 𝜎2 given 𝛽 , is harder to obtain since 𝜎2 appears in the first and the 

second lines of (17.1.10).  

Bayesian analysis with a non-informative prior is similar to that obtained by the least 

squares’ method: conditional on 𝜎2, the posterior of 𝛽~N [ �̂�, 𝜎2(X′X) −1 ], and unconditional 

posterior of 𝛽 is the multivariate t-distribution.  

v. Linear Regression with Informative Priors  

The Bayesian normal linear regression model can also be modeled with informative priors. For 

example, the normal-gamma priors with the normal conjugate prior for β, and the gamma 

conjugate prior for 1/𝝈𝟐 leads to the posterior of a normal-gamma type (see Cameron (2013), p.p. 

437-8). In general, using a conjugate is equivalent to augmenting the data with a second sample 

 
23 We employ the change of variable method to simplify a more involved integration for an independent 

variable x by using another simpler variable u where, as above, the relationship between x and u is known.    
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from the same distribution as long as the priors are correctly specified. Therefore, the normal-

gamma prior is equivalent to an additional sample of the same process as the regression parameter 

estimate. In effect, the sample and prior information are treated symmetrically, thus disregarding 

that the information from the two sources may be in conflict; it is the price involved in using 

conjugate priors. If the prior and the sample information are in conflict, then the posterior 

distribution can be bimodal, with one mean for the sample and another for the prior. A prior known 

as Dickey’s prior that accounts for this bimodality is the multivariate Student-t density for 𝛽 that 

is independent of a gamma prior 1/𝜎2.  

vi. Hierarchical Priors 

Hierarchical priors arise when parameters in a prior are themselves modelled as having a 

distribution; such a distribution is an intermediate prior between the non-informative and 

informative priors. With this type of prior, the prior parameters depend on another set of earlier 

parameters called hyperparameters, or “prior on prior” parameters.  Now, the data have joint 

density L(y|𝜃) but the prior on 𝜃 depends on parameter τ that are random rather than fixed. Using 

Bayes’ rule and the joint priors leads to the joint posterior: 

P(𝜃, τ) ∝ L(y|𝜃) 𝜋 (𝜃|𝜏)𝜋(𝜏) 

We are usually interested in the marginal posterior for 𝜃 obtained by integrating the joint posterior 

with respect to 𝜏.  

Hierarchical priors arise naturally in the context of hierarchical models, also known as 

multilevel models. The data for analysis naturally fall into strata where one expects groupwise 

parameter variation in the model under study. Examples are modeling test scores by individual 

characteristics varying across students, grade class characteristics varying across grades, and 

school characteristics that vary across schools; such data involve clustering of observations.   

Consider a two-stage linear regression model hierarchical in regression parameters but not 

in parameter variance. Denote the first stage linear regression as Y=X1 𝛽1+u, and 𝛽1 depending on 

both parameters and data, so 𝛽1= X2 𝛽2+v, and the errors assumed normally distributed; for 

example, the first level can be an individual firm features and the second level the industry 

characteristics. Then the second-level 𝛽2 are unknown and a prior is specified for them resulting 

in the following model, see also Cameron & Trivedi (2005), p.441: 
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y|X1, 𝛽1, 𝜎1
2 ~ [ 𝑋1𝛽1, 𝜎1

2𝐼𝑁] 

𝛽1|X2 , 𝛽2, ∑2 ~ [ 𝑋2𝛽2, ∑2] 

𝛽2 ~ N [𝛽∗, ∑∗] 

                                  𝜎1
−2|𝑣∗, 𝜎∗2 ~𝒢 [

𝑣∗

2
, (𝑣∗𝜎∗2)/2]                                     (17.1.14) 

The second line provides the prior for the regression parameter in the first line, while the third line 

provides the subsequent second-stage prior, or a prior on a prior for 𝛽2, assuming ∑2is known. 

(𝛽∗, ∑∗) are the hyperparameters; the fourth line provides a prior for variance parameters 

parameter 𝜎1
2 by specifying  𝑣∗, 𝜎∗2by gamma distribution 𝒢.  Assuming no functional form mis-

specification, we can collapse the stages into a two-level model. As an example, suppose the data 

falls naturally into J group with differing population mean across groups; for individual i in group 

j, suppose yij ~ N(𝜃𝑗  , 𝜎2) with known , 𝜎2. Then the sample mean for the jth group with Nj number 

of individuals s �̅�𝑗  ~ N(𝜃𝑗  , 𝜎2/ Nj), assuming independence; a hierarchical model specifies the 

mean with a prior  𝜃𝑗~ N(μ, 𝜏2).  

The methods discussed so far may not be able to capture the full first stage posterior 

distribution parameters analytically, but recent advances in computational methods can handle a 

Bayesian hierarchical model; in particular, the Gibbs sampler, examined below, is well suited to 

hierarchical priors because of their recursive structure.  

 vii. Bayesian Updating  

An interesting feature of Bayesian inference is that it updates the posterior as new information 

becomes available, namely, it treats the current posterior as a new prior as new information 

unfolds. As an example, let y1 be the number of heads in tossing a coin n1 times; the probability of 

heads is 𝜃. Hence, 

 𝜋(𝜃|𝑦1) ∝ f(𝑦1|𝜃) 𝜋(𝜃) 

If now a new set of data y2 becomes available, we compute a new posterior given the complete 

data set, 𝜋(𝜃|𝑦1, 𝑦2), that is: 

𝜋(𝜃|𝑦1, 𝑦2) ∝ f(𝑦1, 𝑦2|𝜃) 𝜋(𝜃) 

      = f(𝑦2|𝑦1, 𝜃) 𝑓(𝑦1|𝜃)𝜋(𝜃) 

      ∝  f(𝑦2|𝑦1, 𝜃) 𝑓(𝑦1|𝜃)   (17.1.15) 
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If the data sets are independent, then f (𝑦1| 𝑦2, 𝜃)= 𝑓(𝑦2|𝜃). By this procedure, the Bayesian 

posterior is updated to become the new prior for the next computation to reflect new information.  

For a simple example of updating, consider data generated from Bernoulli trials with beta prior 

parameters α0, and β0 ;  suppose the first n1 trials and set s1=∑y1i, and the second n2 trials and set 

s2=∑y2i. Then the posterior based on the first experiment is, (see also Greenberg (2013), p.26) 

f(𝜃|𝑠1)  ∝  𝜃  𝛼0−1 (1-𝜃)𝛽0−1  𝜃  𝑠1 (1-𝜃) 𝑛1 −𝑠1  

The first two moments are obtained by the sum of the exponents to the bases 𝜃 & (1 - 𝜃): 

𝜃|𝑠1  ~Beta (α0 + s1, β0 + (n1 - s1)) 

However, if instead we regard the latter as the prior for the second experiment, then we have: 

f(𝜃|𝑠1,𝑠2,)  ∝  𝜃  𝛼0+𝑠1 −1 (1-𝜃)𝛽0+( 𝑛1 −𝑠1)−1  𝜃  𝑠2 (1-𝜃) 𝑛2 −𝑠2  

Once again, the sum of the exponents to the bases 𝜃 & (1 - 𝜃) provide the first two moments of 

the new beta prior: 

𝜃|𝑠1,  𝑠1 ~Beta (α0 + (s1 + s2 ),  β0 + (n1 + n2) - (s1 + s2)) 

The latter distribution follows from a B(α0, β0) prior specification obtaining  (s1 + s2) from (n1+n2) 

trials. Therefore, if the data are sequentially generated, the Bayesian posterior becomes a new prior 

on new evidence. The approach allows new information to influence beliefs about a parameter.  

viii. Bayesian Inference 

The posterior distribution provides the basis of Bayesian inference; that is marginal posterior 

estimates, point estimation, interval estimation, and hypothesis testing. There are important 

conceptual differences between Bayesian and classical inference; let us consider each in turn. 

ix. Marginal Posterior 

In general, given a multinominal 𝜃/= ( 𝜃1, . . . , 𝜃q), interest lies in the marginal posterior density 

P(𝜃k |y) of the individual kth parameter, 𝜃k, obtained by integrating out (marginalizing) the joint 

posterior of all the remaining (q-1) elements of 𝜃.  

P(𝜃k |y) = ∫ p( 𝜃1, . . . , 𝜃p|y)d𝜃1. . . d𝜃k-1 d𝜃k+1. . . d𝜃q 
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    = ∫ p( 𝜃p|y) d𝜃- k 

𝜃- k in the second line denotes all elements of 𝜃 other than 𝜃k; unlike the symmetric and unimodal 

classical asymptotic normal distribution, Bayesian marginal density is usually asymmetric and not 

always unimodal. 

x. Point estimation 

Bayesian approach to the estimation of a scalar parameter 𝜃 employs a loss function, that is, the 

loss involved if 𝜃≠ 𝜃; usual examples are the absolute loss function L1(𝜃, 𝜃)=|𝜃, 𝜃| and the 

quadratic loss function L2(𝜃, 𝜃)=(𝜃, 𝜃)2. These loss functions minimize the (𝜃 −  𝜃) difference 

And the loss increases with an increase in |𝜃 −  𝜃|. The Bayesian estimator minimizes the expected 

value of the loss taken over the posterior distribution of 𝜃: 

E[L(𝜃, 𝜃)]= ∫ L(𝜃, 𝜃)𝜋(𝜃|y)𝑑 

Under quadratic loss, the function minimizes: 

E[L(𝜃, 𝜃)]= ∫(𝜃 − 𝜃)2𝜋(𝜃|y)𝑑 

To obtain 𝜃 estimate, differentiate this function with respect to 𝜃and set the resulting equation 

equal to zero. 

2∫(𝜃 − 𝜃)𝜋(𝜃|y)𝑑𝜃=0 

𝜃= 𝜃𝜋(𝜃|y)𝑑𝜃  

That is, for a quadratic loss, the optimal point estimator of 𝜃 is the mean of the posterior 

distribution of 𝜃. It must be noted that the interpretation of 𝜃 is quite different from the classical 

point estimation that takes 𝜃 as an unbiased estimate of the true 𝜃, or consistent estimate of the 

true 𝜃 asymptotically in repeated sampling. Bayesian point estimation seeks to obtain an estimate 

of the entire posterior distribution conditional on the observed data y, not on all possible values of 

𝜃 as an asymptotic requirement. Therefore, the Bayesian point estimation is not restricted to the 

mean and also provides estimates of other quintiles such as the medium. To see the difference, 

consider the coin-tossing example with  𝜃= (1/n)∑yi=�̅�. To determine if the estimator is unbiased, 

we find the distribution of �̅� for the Bernoulli model and compute its expected value over the entire 

distribution of �̅�, 
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E(�̅�)= ∫ �̅� f (�̅�| 𝜃)d�̅� 

Corresponding to every possible value of data, the classical estimator calculates every possible 

value of �̅�, not just the observations available from the sample at hand. Bayesian estimates, on the 

other hand, are conditional only on the data observed; there is no attempt to estimate a value for 

the true parameter. Against this advantage, however, you should bear in mind Bayesian possible 

issues related to the potential distortions by inappropriate function form of the prior, either due to 

improper noninformative functions, or from the implied restriction imposed by informative 

conjugates.   

xi. Interval estimation 

The Bayesian confidence interval has a simpler interpretation compared to the classical approach. 

In the latter, 95% interval means in 95% of repeated sampling, the different point estimates of 𝜽 

all fall inside the upper and lower boundaries of the interval; this involves data that are not 

observed. By contrast, a Bayesian 95% posterior confidence interval of 𝜽 means the estimate lies 

within the interval boundaries with posterior probability of 95% based only on the observed sample 

of the data.  

xii. Hypothesis testing 

Since there is little interest in determining the true value of a parameter, hypothesis testing is not  

a focal issue in Bayesian econometrics; instead, the focus is on the range of values that  𝜽 may 

take, given the data and a prior. For this kind of problem, the Bayesian approach gives more 

attention to model comparison. 

xiii. Large Sample Bayesian Consistency   

We have discussed how the likelihood function dominates the posterior estimates as the sample 

size increase in the discrete case with a Bernoulli coin-tossing example. The same result holds 

with a continuous variable as the influence of even informative priors on the posterior estimation 

goes to zero as sample size gets larger. Because the posterior distribution is hard to work with, an 

asymptotic approximation as a substitute for the finite posterior is of interest in Bayesian analysis, 

and obtaining the asymptotic posterior with a large sample size then becomes easy since it is equal 

to the likelihood. Assume observations are iid, then the log-posterior is: 
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∑ 𝑙𝑛𝑃(𝜃|𝑦𝑖) = 𝑙𝑛 𝜋(𝜃) + ∑ 𝑙𝑛 𝑓(𝑦𝑖|𝜃)𝑁
𝑖=1

𝑁
= 1      (17.1.16) 

(17.1.16) demonstrates clearly that with the contribution of the prior fixed as the sample grows 

with N, the posterior is dominated by the likelihood contribution; the asymptotic properties of the 

posterior model, 𝜃, is then the maximum of the posterior, assuming the posterior to be unimodal 

and approximately symmetric. Moreover, note that the posterior mode converges to the MLE since 

the second term in (17.1.16) dominates as N → ∞, therefore, the posterior mode is consistent if 

the MLE is consistent.  

To obtain the asymptotic distribution of  𝜃, consider a second order Taylor series expansion 

of the log posterior density around the posterior mode 𝜃 : 

ln P(𝜃|𝑦) ≃ ln 𝑃( 𝜃|𝑦) + 
1

2
 (𝜃 − 𝜃 )

′
[
𝜕2 ln 𝑃(𝜃|𝑦)

𝜕𝜃𝜕𝜃′  |𝜃=𝜃′  ] (𝜃 − 𝜃 )  (17.1.17) 

Note where (17.1.16) is simplified because 𝜕𝑃(𝜃|𝑦)/𝜕𝜃 = 0 when evaluated at the posterior 

mode, and we assume higher order terms are negligible. Let 𝕿(𝜃 )= -  
𝜕2 ln 𝑃(𝜃|𝑦)

𝜕𝜃𝜕𝜃′  |𝜃=𝜃′ be the 

observed information based on the posterior density ln P(𝜃|𝑦) evaluated at the posterior mode, 

then exponentiating (17.1.17)yields 

P(𝜃|𝑦) ∝ exp(- 
1

2
 (𝜃 − 𝜃 )

′
𝔗(𝜃 )(𝜃 − 𝜃 ) 

This is the kernel of multivariate normal distribution with mean 𝜃 and variance matrix 𝔗(𝜃 )
−1

; 

thus 𝜃 is distributed as 

𝜃|𝑦 ~a N [𝜃,𝔗(𝜃 )
−1

]       (17.1.18) 

As N → ∞, the likelihood component dominates the posterior while the impact of the prior tends 

to zero, so the LME mode 𝜃 replaces the mode of the likelihood. This important result, known as 

the Bayesian central limit theorem, demonstrates that asymptotically the classical and Bayesian 

inferences will be based on the same limiting multivariate distribution. Therefore, there should be 

no difference between them. The full force of the implication of this result will become clear when 

examining numerical methods for approximating the posterior distribution.  

xiv. Model Comparison  
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Model comparison to determine which among several models is best supported by the prior and 

the data is the main aspect of Bayesian inference. In the classical regression, two models may 

differ by which covariates are included corresponding to different specification of the parameter 

vector. In the Bayesian approach two models can differ by their priors, their likelihood, or their 

parameter. The problem is dealt with by computing the probability that Mi is the correct model, 

given the data; with only two models i=1, 2, we first compute P(M1|y) and then use that to obtain 

P(M2|y)= 1 - P(M1|y). Employing Bayes theorem and first introducing the parameters, and then 

integrating them out: 

P(M1|y) = 
𝑃(𝑀1)𝑓1(𝑀1|𝑦)

𝑓(𝑦)
 

= 
   𝑃1∫ 𝑓1(y,𝜃1|)𝑀1𝑑𝜃1

𝑓(𝑦)
  

                         =  
 𝑃1∫ 𝑓1(y|𝜃1,𝑀1)𝜋1(𝜃1|𝑀1)𝑑𝜃1

𝑓(𝑦)
 

where  

f(y)= 𝑃1∫ 𝑓1(y|𝜃1,𝑀1)𝜋1(𝜃1|𝑀1)𝑑𝜃1+ 𝑃2∫ 𝑓2(y|𝜃2,𝑀2)𝜋2(𝜃2|𝑀2)𝑑𝜃2  (17.1.19) 

Therefore, each term of f(y) contains the integral of a likelihood function with respect to a prior 

distribution.  

mi (y)=∫ 𝑓𝑖(y|𝜃𝑖 , 𝑀𝑖)𝜋𝑖(𝜃𝑖|𝑀𝑖)𝑑𝜃𝑖   (17.1.20) 

(17.1.20) is called the marginal likelihood for model i and interpreted as the expected value of the 

likelihood function with respect to the prior. Using the definition of the posterior function, we have 

𝜋(𝜃|𝑦) =
𝑓(𝑦|𝜃)𝜋(𝜃)

𝑓(𝑦)
 

         = 
𝑓(𝑦|𝜃)𝜋(𝜃)

∫  𝑓(𝑦|𝜃)𝜋(𝜃)𝑑𝜃
 

Note that the marginal likelihood is equal to the inverse of the normalizing constant of the posterior 

distribution (the expressions in front of P1 above), therefore, the correct marginal value requires 

including the normalizing constants of 𝑓(𝑦|𝜃)& 𝜋(𝜃). 

 The Bayesian comparison of two models is usually undertaken by computing the odds ratio in 

favor of Model 1 over Model 2, given the data:  
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R12=
𝑃(𝑀1|𝑦)

𝑃(𝑀2|𝑦)
 

= ( 
𝑃1

𝑃2
 )(

∫ 𝑓1(y|𝜃1,𝑀1)𝜋1(𝜃1|𝑀1)𝑑𝜃1

∫ 𝑓2(y|𝜃2,𝑀2)𝜋2(𝜃2|𝑀2)𝑑𝜃2 
) 

= ( 
𝑃1

𝑃2
 )(

  𝑚1(𝑦)

𝑚2(𝑦)
) 

Note f(y) is dropped from the ratio above because it is common to both models. The first term on 

the RH is the prior odds ratio, the ratio of the prior probability M1 to the prior probability of M2. 

The second term, the ratio of the marginal likelihood of the two models, is called the Bayes factor 

and denoted by B12. A large value of R12 is evidence of better support for M1 over M2 from the data 

and the prior information; a small value of R12 is evidence of better support for M2; while a value 

around 1 suggests both models are equally supported by the data and the prior. A pairwise 

comparison can also be undertaken when there are more than two models by conveniently 

presenting the results in terms log10 (R12) rather than R12 (integral part of a logarithm to base ten is 

interpreted as a power of ten). Table 17.2 provides guidelines for interpreting log10 (B12). When 

there is little information with which to specify the prior odds ratio, the burden is on the Bayes 

factor to choose the models, provided there are no problematic prior specifications issues. 

Table 17.2-Jeffery’s model comparison Guidelines 

 

As an example, consider two competing models for m times tossing of a coin for a head with 

probability 𝜃1when tossed by a boy (Michael) v. 𝜃2≠𝜃1 when tossed by a girl (Lila), and test of 

𝜃1=𝜃2= 𝜃 in M1: v.  𝜃2≠𝜃1 in M2. For simplicity, we assume priors 𝜋1(𝜃1)=B(1, 1)= 𝜋1(𝜃1) which 

implies 𝜋(𝜃)=1, 0 ≤ 𝜃 ≤ 1. The results of this experiment are shown in table 17.3 for selected 

values of outcomes with m=10 & 100, showing the log10(Bayes factor) supporting M1 model as the 

proportion of heads for both players approaches 0.5(weak evidence), while M1 is decisively 
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rejected with large differences between the players and such differences are magnified with the 

larger sample size.   

Table 17.3-Bayes Factor for Possible selected outcomes 

 

An important advantage of the Bayesian comparison is the ability to conduct non-nested 

hypothesis testing. A common example is the choice between y and log(y) as the response 

(dependent) variable. Suppose that under M1, the likelihood function is  f1(y|𝜃1), and under M2, we 

have f2(z|𝜃2), where z=g(y) and g(y) is monotone. Since y and g(y) contain the same information, 

the posterior odds ratio should not depend on whether we have  

 
𝑃(𝑀1|𝑦)

𝑃(𝑀2|𝑦)
or 

𝑃(𝑀1|𝑧)

𝑃(𝑀2|𝑧)
 

Apply the usual transformation of variable rule: 

f(zi|𝜃)=f(yi|𝜃)|
𝑑𝑦𝑖

𝑑𝑧𝑖
| 

The independence of the Bayes factor from different definitions of the response variable is clear 

from this transformation because the first derivative Jacobin terms cancel out from the top and 

bottom of the posterior odd ratio. By contrast, the classical approach has to first create a hybrid 

model combining both models, and then test each model against the hybrid.  

Readings 

For textbook discussion, see Greenberg (2014, Part I), Cameron and Trivedi (2005, chapter 13).  

Garthwaite et. al. (2005) survey elicitation methods for more objective priors.  
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Chapter 17 Bayesian Econometrics Exercises 

Q17.1 (Conjugate Bernoulli) Given the parameter 0 <θ < 1, N iid Bernoulli random variables 

Yt=(1, 2, 3, . . . , T), each with pmf, and the likelihood function 

PB(𝑦𝑡|θ )={
𝜃 if 𝑦𝑡 = 1

1 − 𝜃 if 𝑦𝑡 = 0
} & L(θ)=𝜃𝑚(1 − 𝜃)𝑇−𝑚  (1) 

where m=N for the number of successes, 𝑦𝑡=1. Suppose prior beliefs concerning θ are represented 

by a beta distribution with pdf 

PB(θ |α, δ)=[B(α, δ)]-1 θ α-1(1- θ )δ-1, 0< θ <1 

Where α > 0 & δ > 0 are known, and B(α, δ)=Г(α )Г(δ )/Г(α, δ) is the beta function defined in 

terms of the gamma function Г(𝛼 )=∫ 𝑡𝛼−1 exp(𝑡) 𝑑𝑡
∞

0
. Find the posterior density of θ. 

Q17.2 (Conjugate gamma) Consider a random sample Yt (t=1, 2, . . . , T) from a distribution with 

pdf P(θ |y)=θ𝑦𝜃−1 for 0<y<1, & P(θ |y)=0 otherwise. Suppose the prior distribution of θ is the 

gamma G(α, β) with α>0 and β>0. Determine the mean and variance of the posterior distribution 

of θ. 

Q17.3 (Bernoulli sampling) Consider a random sample from a Bernoulli distribution with the pmf  

given by (1) in Q17.1. Find Jeffreys’ prior. 

Q17.4 (Jeffreys’ prior re-parametrization) Suppose Yt (t=1, 2, . . . , T) are iid random variables 

from the exponential distribution with mean θ. 

a.  Derive Jeffreys’ prior for θ. 

b. Derive Jeffreys’ prior for α=θ-1.  

c. Find the posterior density of θ corresponding to the prior density in (a). Be specific in 

noting the family to which it belongs. 

d. Find the posterior density of 𝛼 corresponding to the prior density in (b). Be specific in 

noting the family to which it belongs. 
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Chapter 18 Bayesian Simulation Models 

Introduction 

In many applications of Bayesian models, the parameter of interest is analytically interactable, and 

must rely on numerical methods to obtain approximations to various features of the posterior 

distribution. Such methods have computer-intensive time requirements and their employment has 

expanded rapidly with computer processing power. Such key moments of the posterior distribution 

can be estimated with explicitly obtaining the distribution itself. Many of the applications are 

attempts to approximate a quantity such E[g(X)] given a distribution for  X ~ f(x), but an analytical 

computation ∫g(x)f(x)dx is not possible; similarly, this is the case for other moments, including 

those with intervals. 

18.1 Classical Simulation 

In this section we examine four most frequently employed simulations that generate independent 

samples from probability distributions: integral transformation, composition, accept-reject and 

importance sampling. These methods that also appear in modifications as parts of more general, 

Markov-based simulations that are not drawn from independent sampling but can handle a greater 

variety of distributions than those examined in this section, as discussed below.  

i.Integral Transformation Method 

The simplest method can demonstrate the ability of Bayesian simulation to generate independent 

samples from probability distributions. We use the convention that a variable in capital letters 

denotes a random variable while one in lower case denotes a particular value of that variable.  

Suppose F(.) stands for the cdf of a continuous random variable X; make draws from uniform 

distribution U [0, 1] and set X= F - 1(U) which implies U= F(X): 

P[X ≤ x]=P(F(X) ≤ F(x)] 

=P(U ≤ F(x)] 

= F(x) 

The second line follows from the non-decreasing cdf X, and the last line follows from the property 

of the uniform distribution that P(U ≤ U)= u; evaluated over X interval at the smallest values of 
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such intervals. This method is called the inverse transformation or probability integral 

transformation; the simulation algorithm involves 

1- Drawing u from U[0, 1]; values assumed to be independently drawn.  

2- Return to x= F - 1(U) as a draw from f(x). 

The application requires the cdf F(x)to be fully known (normalization constant, and its kernel 

known) and its inverse easily computable; most computer programs have routines for the inverse 

functions of standard distributions.  

Example: suppose we draw a sample from a random variable 

𝑦 ~ 𝑓(𝑦) = {
3

8
𝑦2       𝑖𝑓 0 ≤ 𝑦 ≤ 2

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

First, find the d.f. for  0 ≤ 𝑦 ≤ 2 by computing the positive integral of this function (y3 as integral 

3y 2 multiplied by the cubic root of 1/8), therefore: 

𝐹(𝑦) =
3

8
∫ 𝑦2𝑑𝑦

𝑦

0

=
1

8
𝑦3 

Next, draw a value from U(0, 1), set U= 
1

8
𝑦3 and solve for Y= 2𝑈1/3as a draw from f(y). An 

important application of the inverse transformation method is to sample from truncated 

distributions such as univariate truncated normal or Student-t densities because accurate 

approximations to the inverse cdf.s are widely available from computer packages. 

ii.Composition Method  

Sometimes the density f(x) can be mixture densities of a compound distribution  

f(x)=∫g(x|z)h(z)dz 

If you can sample z by drawing from h(z), and conditional x from g(x| z), then the value of x is a 

drawing from f(x). As an example, consider the negative binomial distribution [λ, λ(1+α λ)] where 

α & λ are given constants; and this function is based on  the Poisson distribution and can be 

regarded as a Poisson-gamma compound distribution. First draw z from a gamma distribution with 

mean 1 and variance of α by a transformation of the exponential; then make draws from the Poisson 
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distribution with mean λz, given z from the first step. This method is convenient to employ for 

estimating a joint distribution rather than a mix of conditional and marginal distributions.    

iii.Importance Sampling Method 

Suppose we want to estimate E[g(X)]=∫g(x)f(x)dx but the integral is not analytically computable 

and we cannot use method of composition because we cannot sample from f(x). An alternative is 

to take h(X) to be a distribution from which we know how to simulate the integral 

E[g(X)]=∫ 
𝑔(𝑥)𝑓(𝑥)

ℎ(𝑋) 
 h(x)dx 

This integral can be approximated by drawing a sample of G values, x(g) , from h(X); and then 

compute 

E[g(X)] ≈  
1

𝐺
 ∑𝑔(𝑋(𝑔)) 

𝑓(𝑋(𝑔))

ℎ(𝑋(𝑔))
 

This is a weighted average of 𝑔(𝑋(𝑔)) where the weights 
𝑓(𝑋(𝑔))

ℎ(𝑋(𝑔))
 determine the importance of 

different points in the sample space, hence so the method is called importance sampling; it obtains 

approximation for E[g(X)] by a Monte Carlo simulation when an analytical solution is unavailable. 

However, though sound in theory, the method is not practical, because Eg[h(X)]is unknown, but 

the approach offers potential gains if the weights are fairly flat. To find a suitable distribution for 

h(.), the main question in the implementation of importance sampling, we note that a large f(x)/h(x) 

tends to occur when the tail of h(.) is very small compared to the tail of f(.). This suggests that the 

normal distribution is not a suitable choice for h(.) since it tends to zero very quickly. However, 

suppose the values for the moments of the parameter of interest θ are  𝜃𝑠obtained from s=1, . . ., S 

draws of θ from the importance sampling density g(θ ); given that, the importance sampling-based 

estimates of the posterior moments are consistent and asymptotically normally distributed, see 

Cameron and Trivedi (2005), p. 444-45. In view of the asymptotic normality of the log posterior, 

a suitable choice for g(θ ) density is a multivariate t-distribution, see Greenberg (2013), A,1.17,  

with the mean set to the posterior mode, and degrees of freedom set to a value sufficiently small 

to ensure thick tails.   

Example: obtain an approximation [(1 + x2)-1] where x~ 𝑒1, truncated to [0, 1] interval. Therefore, 

we approximate the integral 
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1

1 − 𝑒−1
∫

1

1 + 𝑥2
 

1

0

𝑒−𝑥𝑑𝑥 

by choosing Beta (2, 3) defined on [0, 1], this provides a good match between beta function and 

target density in the interval. Then, apply the following algorithm 

1. Generate a sample G values, 𝑋(1), . . . , 𝑋(𝐺) from Beta (2, 3) function 

2. Calculate  
1

𝐺
∑ (

1

1+ (𝑋(𝑔))2
𝐺
1 )(

𝑒−𝑋(𝑔)

1−𝑒−1
)(

𝐵(2,3)

𝑋(𝑔)(1− (𝑋(𝑔))2
) 

iv. Accept-Reject Methods 

Suppose we want to draw from the density f(x)but it is difficult to do so. However, there is another 

distribution g(x) from which we can draw easily that covers f(x) in the sense that f(x)≤ kf(g) for 

some finite constant k for all x values. If the unknown is k≥1, it is possible to simulate values from 

a density g(x) for all X in the support, namely the range of values, of f(x). f(x) is called the target 

density, typically the posterior, g(x) the proposal density, and k dominating density. The draws 

from g(x) rather than f(x) are accepted if 

𝑘 ≤  
𝑓(𝑥)

𝑔(𝑥)
 

where k is drawn from the uniform distribution. If this condition is not satisfied, then the draw is 

rejected and further draws are made until the condition is met. Therefore, the algorithm of this 

method is as follows: 

1-Generate a value x from g(x)  

2-Draw a value u from U[0, 1] 

3-Return x as a draw from f(x) if 𝑢 ≤  
𝑓(𝑥)

𝑘𝑔(𝑥)
; if not, reject and return to step 1. Accept x with 

probability 
𝑓(𝑥)

𝑘𝑔(𝑥)
 and continue until the desired number of draws is obtained. This procedure is 

known as the Accept-Reject (AR) method. To show how the AR method works, considerℎ[𝑥|𝑢 ≤

 
𝑓(𝑥)

𝑘𝑔(𝑥)
]; using Bayes’ theorem together with the property of uniform distribution P(u≤ t)=t for 0  ≤ 

t ≤ 1, we have: 
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ℎ [𝑥|𝑢 ≤  
𝑓(𝑥)
𝑘𝑔(𝑥)

] =
𝑝[𝑢 ≤ 𝑓(𝑥)/𝑘𝑔(𝑥)|𝑥]𝑔(𝑥)

∫ 𝑝[𝑢 ≤ 𝑓(𝑥)/𝑘𝑔(𝑥)|𝑥]𝑔(𝑥)𝑑𝑥
 

          =
[𝑓(𝑥)/𝑘𝑔(𝑥)]𝑔(𝑥)

1

𝑘
∫ 𝑓(𝑥)𝑑𝑥

= 𝑓(𝑥) 

where 
1

𝑘
= ∫ 𝑝[𝑢 ≤ 𝑓(𝑥)/𝑘𝑔(𝑥)|𝑥]𝑔(𝑥)𝑑𝑥. While this proves the method works, it also points 

out to its limitation, since on average a draw will be accepted with probability 1/k, so that many 

draws are necessary if k is large. This suggests the choice of k should be as small as possible in 

order to maximize the probability of acceptance because rejected draws use computer time 

without adding to the sample. The attraction of the AR method depends on the ease of drawing 

from g(x) rather than f(x). It should be noted that the AR algorithm is also useful when the 

normalizing constant of f(x) is unknown, when for f(x)= k r(.), we know r(.), but k is still 

unknown, Then, choose k so that r(x) ≤ kg(x), so, accepted values of x are a sample of f (x). 

Thus, the AR method can be employed even if the normalizing constant of the target distribution 

is unknown; in this case it is not required that k ≥1. Figure 2.1 explains the AR method 

 

Figure 2.1-the AR method draws from density g(x) where kg(x) envelopes  

the desired density f(x) 

Example1: consider drawing from the negative binomial ~ [λ, λ(1+αλ)] where α & λ ae constant. 

Since the negative binomial distribution has a mixed Poisson-gamma distribution, see notes on the 

Poisson model, first draw ε from a gamma distribution with mean 1 and variance α, obtained from 

a transformation of the exponential. Then, draw from the Poisson distribution with mean λε, given 

ε from step 1. 
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Example2: Consider sampling from Beta (3, 3) with U (0, 1) as the proposal density. The maximum 

of the target density occurs at y=1.2 where the density function equals c=1.8750, and 1/c=0.533324. 

In this case, the target is far from that generated by the proposal function because values close to 

zero and one are over-sampled by the proposal function.  

The AR method is similar to the Metropolis-Hastings (M-H) method (section III below) since both 

involve a rejection step but with important differences. First, the M-H is more general; it is 

employed to sample from a greater variety of distributions. Second, the M-H method tends to 

generate positively correlated rather than independent samples, which produce a smaller variance 

and more information from a given sample size. True, negatively correlated, samples result in even 

smaller variance than independent samples, but there are no sure known methods that generate 

either independent or negatively correlated samples, so the M-H method remains popular for 

simulation in applied Bayesian analysis.     

 

18.2 Markov Chain Simulation   

The simulation methods examined so far aim at obtaining estimates for the summary moments of 

the target distribution. In any case, the classical simulation methods are often inefficient; for 

instance, the AR procedure can result in a high percentage of rejected draws. An alternative is to 

simulate by sequentially drawing simulated values that, if the sequence is run long enough, 

converge to a stationary invariant distribution that corresponds to the target posterior density. Once 

convergence is achieved, such sequential draws can be employed to estimate summary measures 

for the posterior. This alternative approach is known as the Markov Chain Monte Carlo (MCMC) 

simulation; it attempts to obtain the distribution of the target function from a large sample drawn 

from the posterior distribution, and then estimate the desired distributional moments from such a 

sample. The draws are positively correlated; therefore, the precision of the estimates will be 

reduced as the estimated variance will exceed the usual one; however, the approach makes up for 

this drawback by offering great flexibility. The development of the MCMC since the 1990’s has 

greatly increased the scope of the Bayesian methods. We first look at Markov chain transitional 

 
24 Since the beta distribution function parameters are related to the gamma function, find the nearest row in 

the gamma table col. headed 0.5, that is 0.5371, and difference that from the corresponding value in the 

first column of the same row (the cumulative value) is then c=0.5371-0.0047=0.5333, and 1/c=1.875.   
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probability from one state to another, for example probability of oberseving a person in a day in 

state of “working”, “eating”, “resting”, or “sleeping”; the list of all possible states forms the “state-

space” of this example. A Markov chain gives the probility of moving from “working” state, say 

to another, “eating” without “resting” first.  

i.Finite State ,  

With a two-state Markov chain, there are 4 possible transitions since each state can return back to 

itself as shown in Figure 2.2. If the movement between states are as likely, the probability of 

transition from one state to another is 0.5. As the number of states increase, we use a transition 

matrix to account for the scores 

 

Figure 2.2-2-state Markov Chain 

 A B 

A P(A|A): 0.5 P(B|A): 0.5 

B P(A|B): 0.5 P(B|B): 0.5 

 

In the matrix transional presenation, each state is shown by one row and one column, so the number 

of cells increases quadratically with each new state added to a Markoc chain. A real-world Markov 

chain application is by comuter simulation, and often displays “stickiness”, that is greater than 0.5 

probabilty of staying in the state and smaller than 0.5 probabilty of transitioning to another state. 

For our example, it more likely to observe the person in the state of “working”, or “sleeping” in 

the next period than transitioning to the state of “resting”, or “eating”. Figure 2.3 mimics such as 

a two-state Markov chain that has a 0.9 probability of staying state “S” when starting  in state “S”, 

and only 0.1 chance of leaving it to transition to state “R”. That is, once you start from a given 

state, there is a much higher probability of staying put in the same state. 
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Figure 2.3-“Sticky” 2-state Markov Chain 

We examine the MCMC mainly in the context of a stochastic process Xt that takes values 

in the finite discrete set S=(1, . . ,s)  where the index t signifies time; we then briefly introduce the 

additional conditions required to ensure convergence to an invariant distribution when the state 

spaces are not finite or are continuous.  

Given a pair of integers i, j Є S, let Pij be the probability of Xt+1  = j given that Xt=i; that is: 

Pij = P(Xt+1  =j| Xt=i),  i, j Є S 

where the Pij are the transitional probabilities. The key assumption here is that the probability 

distribution at time t+1 depends only on the state of the system at t; a stochastic process that has 

this property is known as a Markov process. A Markov process is more general than an 

independent process but does not include all stochastic processes. Since 𝑃𝑖𝑗are probiabilites, we 

have Pij  ≥ 0, and since the process remains in S, we also have∑ 𝑃𝑖𝑗 = 1
𝑠

𝑗=1
., e discussion of M-

H below. We define the s by s transitional matrix by P= {Pij}. The ith row of P specifies the 

distribution of the process at time t +1 over the set S, given that it is in state i at t. For example, the 

transitional matrix 

𝑃 = [
0.750 0.250
0.125 0.875

]        (18.2.1) 

stays in state 1 with probability of 0.750, and moves to state 2 with probability of 0.250 if it starts 

in state 1; and if it starts in state 2, it moves to state 1 with probability of 0.125 and stays in state 

2 with probability of 0.875. Next, we introduce some properties of the Markov chain needed to 

establish that the MCMC will converge on an invariant distribution of the target function.  
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The rows of a completely random or independent P are identical if Pij =Pi , so a move from 

i to  depends only on j, namely, an independent coin tossed with P1 =2/3 and P2 =1/3 will have a 

transition matrix with equal rows. If 𝑝𝑖𝑗
(𝑛)

 >0 for some n states n≥1, then j is accessible from i, 

i →j ; if i →j and j→i, j & j communicate, denoted as i ↔j.  Using these notations, the relationship 

between two states i and j defines an equivalence relationship if they meet the following 

conditions: i ↔ i (reflexivity), i ↔ j ⇔  j ↔ i (symmetry); i ↔ j and j ↔ k ⇒  i ↔ k (transitivity). 

If starting from state i, a Markov process can reach any other state with a positive probability, then 

the process has only one equivalence class, such a Markov process is called irreducible. More 

generally, if there are a sub-set of states you cannot reach from state i, then the process is reducible. 

On the other hand, irreducibility means the stochastic process goes from one state to any other 

state in a finite n numbers of steps. 

For example  

𝑃𝑅 = [
𝑝1 0
0 𝑝2

]        (18.2.2) 

is not irreducible because if the process starts from any state {1, 2}, it will never leave that state. 

The implication in such cases is that the state at which the process starts has a huge impact on its 

subsequent path.  

 Another condition required in te application of the MCMC is aperiodicity. Figure 2.4 

shows a periodic Markoc chain that when starts from state 0, retuns to it at n=3, 6, …. That is, the 

probability of returning to the same state is zero if n is not divisible by 3, 𝑃00
(𝑛)

=0. Then such a state 

is called a periodic state with period d (0)=3. More geneally, if the period of i, d(i)>1, the state i is 

periodic and if d(i)=1, state i is apriodic; a Markov chain is aperiodic if all its states are aperiodic, 

that is, if 𝑖 ↔ 𝑗, then d(i)= d(j). If we can go from state i to itself in l and again in m steps, then we 

have an aperiodic Markov chain. It follows that an irreducible Markov chain is also aperiodic 

because any state with a self-transition is aperiodic25.   

 
25 If l and m are two co-prime numbers, that is their largest common divisor is 1, then 𝑝𝑖𝑖

(𝑙)
> 0 and 𝑝𝑖𝑖

(𝑚)
> 0, and 

we have an aperiodic chain. Since the number 1 is co-prime to every integer, any state with a self-

trsnsition is aperiodic.    
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Figure 2.4 Aperidocity 

Consider the distribution of states at t+2 denoted 𝑝𝑖𝑗
(2)

that can be computed as going from 

state i at t+1, to any other state k at t+2, and then moves to state j at t+3; so, the transition from i 

to j occurs in two steps with probability: 

𝑝𝑖𝑗
(2)

= ∑ Pik kij 

If we define 𝑝𝑖𝑗
(0)

 =1 if i = j, zero otherwise, we can also define a general n-step transition matrix 

where the values of  𝑝𝑖𝑗
(𝑛)

 are the ijth entries in the matrix 𝑃𝑛. Using a multiple-step process, we 

call a Markov chain periodic if the process at t=1 must proceed to a second state at t=2, before it 

can return to the first state at t=3. Such a periodic Markov process has a chain of 2, or 2 steps; 

more generally in a n-step transition process; such a positive probability of return to the same state 

exists only at even values of n. If the period is 1 for all states, the chain is aperiodic. A Markov 

chain is aperiodic if 𝑝𝑖𝑖
(𝑛)

> 0 for all i, and for sufficiently large n.  

We employ irreducibility and aperiodicity to establish the invariant distributional property 

of the MCMC methods. The probability distribution π=(π1 , . . . , πs)
/ is an invariant distribution for 

P if /= π/P, where π’ is the characteristic vector26of P, or : 

𝜋𝑗= ∑ 𝑃𝑖𝑗𝑖 𝜋𝑗,   j=1, . . , s.    (18.2.3) 

The RHS of this equation is interpreted as the probability of starting at state I with probabilityπi , 

and then moving to state j with probability Pij. It is πj on the LHS that defines invariance; the fact 

that the probability is πj , indicates that the system is in j at any time. Take the earlier example of 

a transition matrix: 

 
26 Given an n by n square matrix D, a scalar r, an n . 1 vector x, and if Dx=rx is satisfied, then r is called a 

characteristic root of matrix D, and x a characteristic vector of that matrix; the equation Dx=rx is 

equivalently solved as a system of equations (D – r I)x=0.  
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(π1 , π2 )[
0.750 0.250
0.125 0.875

]= (π1 , π2) 

or 0.750π1 + 0.125 π2 = π1 which, given π2 = 1- π1 , leads to π=(1/3, 2/3).  

 The next question relates to the existence and uniqueness of the invariance distribution of 

the MCMC. It is clear that from (18.2.2) irreducibility is a necessary condition for a unique 

invariance distribution of P. Suppose π1  and π2  vectors satisfy π/
1P1= π/

1 and π/
2P2= π/

2. Then π is 

a weighted average as π=[wπ1, (1 – w)π2 ], 0≤w≤1shows the invariant distribution for P is not 

unique. Moreover, an irreducible and aperiodic Markov chain 𝑝𝑖𝑗
(𝑛)

 can be shown to converge to a 

unique invariant distribution at a geometric rate when n is large enough, suggesting P n converges 

very quickly to the invariant distribution π/, and the initial state i plays little role in the convergence 

process. This is the property of an independent P n process can be explained with the transitional 

matrix after 10, and then 20 simulations, showing P n has nearly reached invariance after n=10 

simulations to two decimal points; has achieved an invariant distribution (all rows are equal) after 

n=20 to three decimal points.  

P (10) =[
0.339 0.661
0.330 0.670

]  &  P (20) =[
0.333 0.667
0.333 0.667

] 

The above outlines the theorem that is the basis for MCMC methods: 

Theorem 2.1: If  P is irreducible and an aperiodic transition matrix over a finite state spaces, 

then there is a unique probability distribution π such that 𝜋𝑗= ∑ 𝑃𝑖𝑗

𝑛

𝑖
𝜋𝑗 for all j ϵ S ; and 

convergence to that distribution is at a positive geometric rate of 0<r <1.  

An informal method to verify the theorem is to consider what happens if these conditions are 

violated? First consider the reducible transition matrix (18.2.2) 

𝑃𝑅
𝑛 = [

𝑃1
𝑛 0

0 𝑃2
𝑛] 

Since the rows are not the same after n simulation, 𝑃𝑅
𝑛 does not have a unique invariant distribution. 

Now, take an irreducible but  𝑃𝑅
𝑛 is periodic 

𝑃𝑃
2 = [

𝑃1𝑃2 0
0 𝑃2𝑃1

]  & 𝑃𝑃
3 = [

0 𝑃1𝑃2𝑃1

𝑃2𝑃1𝑃2 0
] 
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Because this alternating pattern of the rows continues for every iteration, once again 𝑃𝑃
𝑛 does not 

converge to a matrix with identical rows. Therefore, the theorem maintains that irreducibility and 

aperiodicity are necessary and sufficient conditions to secure an invariant distribution outcome by 

the Markov chain process.   

This theorem is generalizable to countable state spaces, states that are not finite but still 

have discrete values, and also to continuous distribution when a quantitative variable has an infinite 

number of possible values that are not countable. Since most application of the MCMC methods 

is with continuous distributions, this generalization is important. However, irreducibility and 

aperiodicity are not enough to secure the same Markov chain outcome with continuous 

distributions. We discuss the generalization first for the countable case, and then further refine the 

conditions for the continuous case. In this case, the transitional probabilities are 

𝑝𝑖𝑗 = {

𝑝, if 𝑗 = 𝑖 + 1  
𝑟, if 𝑗 = 𝑖         
𝑞, if 𝑗 = 𝑖 − 1

} 

That is, starting from state i, the process moves to i+1 with probability p, to i-1 with probability q 

and stays at i with probability r; p+q+r=1, p, q, r≥0.  Figure 2.2 below demonstrates the outcome 

for an example of a random walk model with the first 500 values generated from a random walk 

with  p=0.55>q=0.45, showing the process approaches +∞ in the sense that 𝑝𝑖𝑗
(𝑛)

→ 0 for all i, j. 

This means starting from state i, the probability that any finite value of j will be reached approaches 

zero. To ensure that simulation by the Markov chain produces the invariant distribution in more 

general contexts beside the finite state spaces, the chain must have an additional property.  

With the random walk of p>q, all the states are transient, and none are recurrent because 

the process approaches infinity with probability of 1; the probability of returns to any state is not 

1. To prevent such outcomes, all states must be revisited with probability of one; such a state is 

called a recurrent state, in contrast to a transient state that will not be revisited with some positive 

probability. Let the probability of event A starting at state j be 𝑝𝑗(A), then J is a recurrent state if 

: 

𝑝𝑗(𝑋𝑛 = 𝑗 i. o)=1 
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where i.o stands for “infinitely often”, namely the process returns to state j an infinite number of 

times with probability 1; otherwise, it is a transient state. In the random walk example, the process 

approaches + ∞ disappear; all states are recurrent if p=q as illustrated in Figure 2.3. In practice, a 

stronger condition, called positive recurrent, defined in terms of the time it takes for the process 

to make its first return to state j, is required to ensure recurrence.  

To further define recurrence for continuous state spaces, let  𝑝𝑥(A) stand for the probability 

of event A, given the process starts at x. Then a π-irreducible chain with invariant distribution π is, 

for each B with π(B )>0: 

 𝑝𝑥(𝑋𝑛 ∈ 𝐵 i. o)=0 for all x 

𝑝𝑥(𝑋𝑛 ∈ 𝐵 i. o)=1 for π-almost all x. 

The chain is Harris recurrent, if 𝑝𝑥(𝑋𝑛 ∈ 𝐵 i. o)=1 for all x, the condition required for recurrence 

for a continuous process; that is, if a Markov chain for continuous distributions has the property 

of recurrentce, then the chain is Harris recurrent.  

 

Figure 2.2- Random Walk with p=0.55, q=0.45 



 310 

 

Figure 2.3-Random Walk with p=q=0.5 

If a Markov chain satisfies irreducibility and aperiodicity, then, for a large enough n, the 

probability distribution of the drawings is the invariant distribution. This theorem has the important 

implication for simulation: if a Markov process is available for the target distribution, you can 

simulate from the Markov process to generate values for the target distribution.  The aim of 

Bayesian applications is to obtain draws from the posterior distribution; a Markov chain draws the 

initial value of the parameter of interest from a sample of the transition kernel. Then, by a suitable 

method of drawing pseudo-random numbers, a new vector of values is drawn from the transition 

kernel evaluated at the initial values of the parameter. The process continues and at the nth stage 

draws are from the transition kernel of n -1 step. The Markov chain thus employed as n → ∞ is 

the limiting distribution of the posterior. Once convergence to the limiting distribution is reached, 

all subsequent draws are also from this invariant distribution, though they will be correlated.   

18.3 Simulation by MCMC 

Introduction 

MCMC methods produce approximation to the invariant posterior when there is no analytically 

interactable solution is available for the exact posterior, but the question still remains as to how to 

find its distribution kernel. The two widely used Markov chain algorithms employed to find such 

an invariant distribution are the Gibbs Sampler and the Metropolis-Hastings (MH) algorithm. The 

MH is a general principle for finding such kernels while the Gibbs sampler is a special case of the 

MH. Let G stands for the number of simulations that (which can be very large, given the limit on 

computer capacity), and a larger G leads to a more accurate approximation, while n refers to the 
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number of observations, fixed at the time the data are collected. For Bayesian inference, we denote 

the random variable of interest θ and the target, posterior distribution as π(θ | y) where y stands for 

the data.  

i.Gibbs Sampler 

Let θ = [θ1, θ 2 ]
/ have posterior density P (θ )= P [θ1 , θ 2 ] where we have suppressed dependence 

on y, P(θ | y), for convenience. If the posterior has no analytical solution, and the conditional 

densities of both P (θ1 |θ2 ) & P (θ2 |θ1 ) are known, then alternating the draws sequentially from 

P (θ1 |θ2 ) & P (θ2 |θ1 ), in the limit,  converges to draws from the posterior P [θ1 , θ 2 ]. Such a 

MCMC procedure is known as the Gibbs Sampler. The employment of this method requires the 

ability to sample from every conditional distribution, given a non-standard joint distribution of the 

posterior f (x1, x2 ) where the variables are in two conditional blocks  f (x1 | x2 )and f (x2 | x1 ), with 

known simulation algorithms.  

Algorithm for a two-Block Gibbs Sample: 

1-Choose a starting value 𝑥2
(0)

 

2-At the first iteration, draw 

𝑥1
(1)

from f (x1 | 𝑥2
(0)

) 

𝑥2
(1)

from f (x2 |𝑥1
(1)

 ) 

3-At the gth iteration, draw 

𝑥1
(𝑔)

from f (x1 | 𝑥2
(𝑔−1)

) 

𝑥2
(𝑔)

from f (x2 |𝑥1
(𝑔)

) 

And continue until the desired number of iterations for convergence to the invariant distribution is 

are met.  Note that the starting value is not drawn from the invariant distribution, therefore, some 

portion of the initial sample, usually set at several hundred or several thousand and known as the 

burn-in sample, must be disregarded. There is no theory as to what the burn-in sample size should 

be, but for the number of iterations larger than that size, the distribution of the draws is 
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approximately the target distribution, with G denoting the sample size after setting aside the first 

burn-in observations.  

To demonstrate that the invariant distribution of the Gibbs kernel is the target distribution, 

let x=f (x1, x2 ) be the values of the random variables at the start of algorithm iteration and y=f (y1, 

y2 ) be the values at the end of the iteration. Then the Gibbs kernel is: 

P (x, y )= f (y1 | x2 )f (y2 | y1 ) 

We can compute this kernel from  

∫P (x, y )f (x)dx=∫f (y1 | x2 )f (y2 | y1 ) f (x1, x2 ) dx1 dx2 

          = f (y2 | y1 )∫f (y1 | x2 ) dx2 

=f (y2 | y1 )f (y1 ) 

= f (y) 

The single integration in the first line reflects the interdependence of random value draws from 

each of the two blocks at each iteration.  

In the second line, the final constant values come out of the integral, and x1 is integrated out; in the 

third we integrate out x2 to obtain finally the invariant distribution.   

The extension of the Gibbs sampler to more than d>2 blocks requires the possibility of sampling 

from all the conditional densities f (xi | x- i ) where x- i  are all the variables in the joint distribution 

other than xi .  

i.Algorithm for a d-block Gibbs Sampler 

1-Choose a starting value 𝑥2
(0)

, . . . , 𝑥𝑑
(0)

 

2-Draw 

𝑥1
(1)

from f (x1 | 𝑥2
(0)

, . . . , 𝑥𝑑
(0)

) 

𝑥2
(1)

from f (x2 |𝑥1
(1)

, 𝑥3
(0)

, . . . , 𝑥𝑑
(0)

 ) 

. 

. 

. 
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𝑥𝑑
(1)

from f (xd |𝑥1
(1)

, . . . , 𝑥𝑑−1
(0)

 ) 

3-At the gth iteration, draw 

𝑥1
(𝑔)

from f (x1 | 𝑥2
(𝑔−1)

, . . . , 𝑥𝑑
(𝑔−1)

) 

𝑥2
(𝑔)

from f (x2 |𝑥1
(𝑔)

, 𝑥3
(𝑔−1)

, . . . , 𝑥𝑑
(𝑔−1)

 ) 

. 

. 

. 

𝑥𝑑
(𝑔)

from f (xd |𝑥1
(𝑔)

, . . . , 𝑥𝑑−1
(𝑔)

 ) 

For an example, consider bivariate normal data with uniform prior for the mean and known 

covariance matrix. Let y=f (y1, y2 )~ N [θ, ∑ ], where θ = [θ1, θ 2 ]’ for a two-block sample and ∑ 

has diagonal entries as 1 and off- diagonal entries as ρ. Then, given a uniform prior for θ, the 

posterior can be shown to be a bivariate normal θ | y ~ N [ �̅�, N  -1∑ ].  

The conditional posterior distributions are 

θ 1| θ2, y  ~ N [ [(�̅�1 + 𝜌(𝜃2 − �̅�2)) , 
(1− 𝜌2)

𝑁
 ]. 

θ 2| θ1, y  ~ N [ [(�̅�2 + 𝜌(𝜃1 − �̅�1)) , 
(1− 𝜌2)

𝑁
 ] 

 We can use the above to simulate from each conditional normal distribution using updated 

values of θ1 and θ 2, if the chain is long enough, then it will converge to the bivariate normal. 

Another example is the posterior distribution of the normal linear homoscedastic regression model, 

given normal-gamma conjugate priors, see Cameron and Trivedi (2005), p. 448. The conditional 

posterior of β given σ-2 is multivariate normal, and the conditional posterior of  σ-2 , given β, is 

gamma. Though we can drive the posterior explicitly, it is easier to use the Gibbs sampler to draw 

a large sample from the joint posterior distribution. The chain consists of recursive draws from the 

normal conditional on the precision parameter σ-2 and from the gamma distribution conditional on 

the β. 

 The Gibbs sampler usually performs effectively but not in all contexts. If there is high 

correlation between one or more random variables in different blocks, the algorithm may “mix” 

poorly, that is the sampler draws disproportionately from some range of the sample space rather 

than its full support, thereby generating iterations from only a limited portion of the sample. As an 
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example, consider a more simple version of the bivariate normal distribution or a joint function 

X=(X1, X2) distributed as N2  (0, ∑ ) where : 

∑  =[
1 𝜌
𝜌 1

] 

If X1, and X2 are the two blocks of the Gibbs sampler, then similar to the example above, we have 

f  (X1| x2 )~ N [ 𝜌𝑥2, 1 − 𝜌2] & f  (X2| x1 )~ N [ 𝜌𝑥1, 1 − 𝜌2]. The algorithm does not work well if 

ρ≈ 1since that implies the conditional variance of both variables [1 − 𝜌2] is close to zero. In each 

iteration, the sampler generates values that are very close to the value of the previous iteration; 

implying the initial values  𝑥1
(0)

or  𝑥2
(0)

can have a big impact on the generated sample.  

ii. Algorithm of Metropolis-Hastings  

The MH algorithm is more general than the Gibbs sampler since it is a MCMC method that can 

be applied when the full set of conditionals are not available for sampling. First, we examine the 

MH algorithm in one block before considering a two-block MH algorithm.  

We denote the current value of the random variables as x, the next value y , and the invariant target  

distribution f ( . ). The aim is to find a kernel P(X, Y) with f ( . ) as its invariant distribution and the 

full conditional distribution is unavailable, so we cannot employ the Gibbs sampler. We call a 

kernel function q ( ., . ) a reversible kernel if it enable us to write the target function in equivalent 

forms as: 

f (x)q (x, y)=f (y)q (y, x) 

If q is reversible, then 

P (y ∈ 𝐴) =  ∫A∫R
d

 f (x)q (x, y) dx dy       (18.3.1) 

=∫A∫R
d

 f (y)q (y, x) dx dy 

    =∫A f (y)dy 

What this demonstrates is that f ( . ) is the invariant distribution for the reversible kernel distribution 

because the final probability of y is contained in the set A from which f ( . ) is computed. By 

contrast, an irreversible kernel for the values of a pair of random variables (x, y) is 

f (x)q (x, y)> f (y)q (y, x) 
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This means that the kernel moves from x to y with greater probability than it moves from y to x. 

Let us define a probability mass function α (x, y) that captures this difference in probability. 

Multiplying both sides of the above inequality by α (x, y) would again equalize the equation as 

long as we account for that, the kernel moving to x from y with high probability. This can be done 

by setting α (x, y)=1 on the short side of the above inequality. Doing so will then allow the 

necessary modification to the kernel distribution as 

f (x)q (x, y) α (x, y) =f (y)q (y, x). 1 

from which we can obtain the definition of α (x, y)  

𝛼 (𝑥, 𝑦) = {
𝑚𝑖𝑛 { 

𝑓(𝑦)𝑞(𝑦,𝑥)

𝑓(𝑥)𝑞(𝑥,𝑦)
, 1} , 𝑓(𝑥)𝑞(𝑥, 𝑦) ≠ 0 

0                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}      (18.3.2) 

demonstrating that the MH algorithm based on (18.3.2) has a decision criterion similar to the 

Accept-Reject (AR) algorithm. Note that the starting value would be in the support range of for [f 

( . ) q ( ., . )] distribution, therefore, we would not choose a y for which 𝑞(𝑥, 𝑦) = 0, and [f ( . ) q ( 

., . )] ≠ 0 is a problem. Also note that we do not need the unknown constant in the target distribution 

to compute α ( ., . ) because it cancels out via the fraction f (y)/f (x) in (18.3.2). 

The expression q (x, y) α (x, y) has the following interpretation: if the process starts from x 

to generate y from the kernel 𝑞(𝑥, 𝑦), the move to y is with probability of α (x, y). If the move to 

y is rejected, the process remains in x. Here 𝑞(𝑥, 𝑦) acts similarly to the AR algorithm, but with 

an important difference. The AR algorithm continues to generate values until a draw is accepted 

while the MH algorithm by contrast returns the current state of the process as the next state when 

a draw is rejected and continues to the next iteration; this implies the MH values may be repeated 

in a simulation run. Note that (18.3.2) combines a continuous kernel 𝑞(𝑥, 𝑦) with a probability 

mass function α (x, y). 

Using (3.2), we can summarize the MH algorithm: 

1-Given x, generate Y from 𝑞(𝑥, 𝑦) 

2-Generate U from U [0, 1]; if: 
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𝑈 ≤ 𝛼 (𝑥, 𝑦) = {
𝑚𝑖𝑛 { 

𝑓(𝑦)𝑞(𝑦, 𝑥)

𝑓(𝑥)𝑞(𝑥, 𝑦)
, 1} , 𝑓(𝑥)𝑞(𝑥, 𝑦) ≠ 0 

0                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Return to Y; otherwise return to x and go to step 1.The above is only the necessary condition for 

convergence of the MH kernel to the target distribution. The following states the full theorem. 

 

Theorem 18.3.2 Suppose P by (18.3.1) is a π-irreducible Metropolis kernel. Then P is Harris 

recurrent (has positive recurrence with p=q for the continuous states p & q).   

The implementation of the MH algorithm requires a choice for the proposal kernel q (., . ) 

that provides well-mixed simulations. On the one hand, we wish to choose a proposal kernel that 

generates an agreeable probability of acceptance; on the other hand, by generating proposals that 

are close to the current point, the sampling will be confined to a limited section of the support, 

resulting in poor mixing. Two possible candidates to avoid poor mixing are the random-walk 

kernel and the independent kernel.  

First, the random walk kernel generates the proposal y from the current value of x by the 

addition of u, a random variable, or a vector of such variables, y=x +u, by specifying a function 

for u.  Since that distribution is symmetric, h(u)= h(- u), the kernel has the property that 𝑞(𝑥, 𝑦) =

𝑞(𝑦, 𝑥), suggesting  

𝛼 (𝑥, 𝑦) = {
𝑚𝑖𝑛 { 

𝑓(𝑦)

𝑓(𝑥)
, 1} , 𝑓(𝑥) ≠ 0 

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Thus, with a random walk kernel, a move from x to y is certain if f (y)> f (x), but the probability 

of a move from a higher density to a lower density is with f (y)/f (x) less than with one.  

Second, the independent kernel has the property 𝑞(𝑥, 𝑦) = 𝑞(𝑦); meaning, the proposal 

density is independent of the current state of the chain.  

𝛼 (𝑥, 𝑦) = {
{ 

𝑓(𝑦)/𝑞(𝑦)

𝑓(𝑥)/𝑞(𝑥)
} , 𝑓(𝑥)𝑞(𝑦) ≠ 0 

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 
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The probability of a move will be similar to that for the random walk kernel by replacing f ( . ) by 

[f ( . ) /q ( ., . )] 

Example: Beta (3, 4) provides an example of an independent chain with U [0, 1]as the proposal 

density with the following algorithm: 

1-set x(0) equal to a number between 0 and 1 

2-At the gth iteration (after the burn-in sample), generate U1 and U2 from U [0, 1] 

3-If  

𝑈 ≤ 𝛼 (𝑥(𝑔−1), 𝑈2) =
𝑈2 

2(1 − 𝑈2)
3

(𝑥(𝑔−1))2(1 −  𝑥(𝑔−1))3
 

Set x(0)= U2 ,  otherwise set x(0)= 𝑥(𝑔−1). 

4-Go to 2 and continue until the desired number of iterations is achieved. 

Fig. 3.3 shows the results for 5,000 iterations, after the first 500, with a good fit between the 

generated values; the acceptance probability is 0.57, meaning 57 percent of the proposals were 

accepted. The mean of the sample is 0.4296 compared to the theoretical mean of 3/7=0.4286. 

 

Fig. 3.3 MH simulation sampling of Beta (3, 4) with U (0, 1) proposal 

MH algorithm with two blocks 

We can find a suitable proposal more easily if the target distribution has two blocks f (X1, X2).  

Consider the state (𝑥1, 𝑥2)  

1-Let the state at the gth iteration be (𝑥1, 𝑥2), and at the gth+1 iteration be (𝑦1, 𝑦2) and draw 

Z1 from q1 (x1, Z1 |x2) & U1 from U (0, 1) 

2-If  
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𝑈 ≤ 𝛼 (𝑥1, 𝑍1| 𝑥2) = {
𝑚𝑖𝑛 { 

𝑓(𝑍1, 𝑥2  
)𝑞1(𝑍1, 𝑥1|𝑥2)

𝑓(𝑥1, 𝑥2  
)𝑞1(𝑥1, 𝑍1|𝑥2)

, 1} , 𝑓(𝑥1, 𝑥2)𝑞1(𝑥1, 𝑍1|𝑥2) ≠ 0 

0                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Return y1=Z1, otherwise return y1=x1. 

3-Draw  

Z2 from q2 (x2, Z2 |y1) & U2 from U (0, 1) 

𝑈 ≤ 𝛼 (𝑥2, 𝑍2| 𝑦1) = {
𝑚𝑖𝑛 { 

𝑓(𝑦1, 𝑍2  
)𝑞2(𝑍2, 𝑥2|𝑦1)

𝑓( 𝑦1, 𝑥2  
)𝑞2(𝑥2, 𝑍2|𝑦1)

, 1} , 𝑓(𝑦1, 𝑥2)𝑞2(𝑥2, 𝑍2|𝑦1) ≠ 0 

0                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Return to y2=Z2, otherwise y2=x2.. 

In this two-block algorithm, the kernel 𝑞1(𝑥1, 𝑌1|𝑥2) acts like the kernel proposal q (x, Y) to 

generate a value 𝑌1 conditional on the current value 𝑥1 in the same block and the current value 𝑥2 

in the other block; the new densities are specified for 𝑞1(𝑥1, 𝑍1|𝑥2) and 𝑞2(𝑥2, 𝑍2|𝑦1) for each 

value of x2 and Y1. 

We can now show the Gibbs sampler is a special case of the MH algorithm. Consider α(., .) when 

the kernel for moving from the current value of 𝑥1 to the proposal value of Y1 is the conditional 

distribution 𝑓(𝑦1 | 𝑥2), assumed available for sampling. Then 

𝑓(𝑌1,𝑥2  )𝑞(𝑌1,𝑥1|𝑥2)

𝑓( 𝑥1,𝑥2  )𝑞(𝑥1,𝑌1|𝑥2)
=

𝑓(𝑌1,𝑥2  )𝑓(𝑥1|𝑥2)

𝑓( 𝑥1,𝑥2  )𝑓(𝑌1|𝑥2)
 

Since 𝑓(𝑌1|𝑥2) =
𝑓(𝑌1,𝑥2)

𝑓(𝑥2)
 and 𝑓(𝑥1|𝑥2) =

𝑓(𝑥1,𝑥2)

𝑓(𝑥2)
, then it must be the case that  𝛼 (𝑥1, 𝑍1| 𝑥2) =1, 

namely, that the Gibbs algorithm is an MH algorithm where the proposal is always accepted. We 

can still apply the Gibbs Sampler to any blocks of the MH algorithm where conditional 

distributions are available to sample from, leaving the MH algorithm to be employed for finding 

suitable proposal densities and accepting them with probability 𝛼 (𝑥, 𝑦).   

Readings 

Greenbeg (2014, Part II), Cameron and Trivedi (2005, chapter 13). Casella and George (1992) 

discuss the Gibbs sampler, Geweke (1989), that of the MCMC simulation.  
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Chapter 18 Bayesian Simulation Exercises 

Q18.1 (Inverse Transfer) Consider the exponential density with the density function 

P(x|θ ) = 𝜃−1𝑒𝑥𝑝(−𝑥/𝜃), x >0 

Define X=F-1(U) where U~ U (0, 1) is a uniform random variable on the unit interval.   

(a) Show that the inverse transformation method can be used to generate draws from the 

exponential density. 

(b) The logistic density function is given by  

P(x)=
exp (−[𝑥−𝜇]/𝜎)

σ(1+exp (−
[𝑥−𝜇]

𝜎
))2

  , -∞<x<∞,  -∞<μ<∞,  σ>0 

Q18.2 (Importance Sampling) Consider estimating a posterior moment of the form E[f (θ)|y].  

However, direct sampling from the posterior is often unavailable. Instead, suppose  

we wish to estimate the expectation of a function of some multivariate random variable X,  

EP[f (x)], where EƤ[f (x)] ≡ μ =∫p𝑓(𝑥)𝑃(𝑥)𝑑𝑥, with Ƥ≡{x: Ƥ(x)f(x)≠0} and assume direct sampling 

is not possible. 

(a) Suppose you can generate samples from some approximating density, I(x), by importance 

sampling method from a collection of M simulations, x1, . . , xm from I. Explain how you 

employ these simulations to obtain the desired moment from the following estimator where 

IS denotes the importance sampling estimator:  

�̂�IS≡ 𝐸Ƥ[𝑓 (𝑥)]̂ =
1

𝑀
∑

Ƥ(𝑥𝑚)𝑓(𝑥𝑚)

𝐼(𝑥𝑚)
𝑀
𝑚=1 , 

discuss the conditions for the choice of I. 

(b)  Derive the variance of �̂�IS and describe how it can be estimated; note that the “sample 

size”, the number of draws from I (.), is under your control.  

 

Q18.3 (Accept-Reject sampling) Consider drawing from a density f (x) defined over the 

compact support a ≤ x ≤b: 

1-Generate two independent uniform variables U1 and U2 as follows: 

Ui ~
iidU (0, 1), i =1, 2 
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2-Let M≡ maxa≤x≤b f (x) if MU2 > f (a+[b-a]U1), go back to the first step and generate new 

values for U1 and U2, and again determine if MU2 > f (a+[b-a]U1). If  MU2 ≤ f (a+[b-a]U1), 

set x= f (a+[b-a]U1 as a draw from f (x).  

(a) What is the probability that any specific application of this algorithm will produce a draw 

that is accepted? 

(b) Sketch a proof as to why x, when it is accepted, has the distribution function 

F(x)=∫ 𝑓(𝑡)𝑑𝑡.
𝑥

𝑎
  

Q18.4 (AR generalization) Suppose we are interested to generate draws from a target density  

f (θ) with support 𝚯 but with an unknown normalizing constant and suppose there is some 

approximating proposal density s(Ɵ)with support 𝚯* such that 𝚯⊆𝚯*. Write the kernels of both 

the proposal and target densities as 

f (θ)=𝑐𝑓𝑓(Ɵ)& s (θ)=𝑐𝑠�̃�(Ɵ) 

where 𝑓& �̃� respectively denote the target and proposal kernels, and 𝑐𝑓& 𝑐𝑠 the associated 

normalizing constants; let �̃� = 𝑠𝑢𝑝Ɵ∈𝛩(
�̃�(Ɵ)

�̃�(Ɵ)
)and consider the following algorithm: 

1-Draw U uniformly on [0, 1], namely U~ U(0, 1). 

2-Draw a candidate from the proposal density s(Ɵ), namely, Ɵcand~ s(Ɵ) 

3-if U ≤ 
𝑓(Ɵ𝑐𝑎𝑛𝑑)

�̃��̃�(Ɵ𝑐𝑎𝑛𝑑)
, then set Ɵ =Ɵcand as a draw from f (θ); otherwise return to the first step and 

repeat until step 3 is satisfied. Show this algorithm includes the line in Q18.3 as a special case. 

Bayesian Computer Exercises 

i.A Markov chain regression 

Q18.5 The Markov chain provides the basis of Bayesian simulation, but its application plays a 

pivotal role in many classical fields, most prominently in State-space econometrics, as exercises 

here demonstrate. Download the data set on usmacro.dat. 

a. Fit a Markov regression with dr (for quick adjustment; use mswitch command) for fedfunds and 

comment on the outcome. 
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b. Fit a mswitch MSDR with switching coefficients and lag 

Q18.6 Download snp500.dta. 

a. Fit mswitch model allowing for non-constant variance across 2 states of switching variances; 

provide comments 

Q18.7 Download rgnp.dta, real growth data set.  

a. Fit mswitch with ar option for a MSAR to growth of gdp with lags=1/4 over 52q1-84q4 period; 

comment on the outcome 

b. Fit mswitch lags=1/2 with switching coefficients with comments 

c. Fit Markov ar regression with constraints & comment on the outcome 

ii. Basics of Bayesian regression 

Q18.8 Download oxygen.dta, Oxygen uptake data set.  

a. Regress change on group & age by OLS and compare with bayesmh command, using normal 

likelihood, flat prior for change, and Jeffreys’ prior, (1/σ^2) density, for variance; comment on the 

outcome.  

b. Fit the same model with informative conjugate normal prior for parameters conditional on 

inverse gamma prior (2.5, 2.5) for variance. 

c. Check the model’s diagnostics for convergence to an invariant posterior to i) change, ii) all 

parameters, iii) sample-size related stats, iv) variance parameter.   

Q18.9 Download usmacro.dat. 

a. Fit regression to Q18.5 model, this time by bayes’ command and provide comment.  

b. Fit the above with the Gibbs option and provide comment 

c. Alter the bayes’ default priors by specifying prior () with change using Zellner prior (3, 12) and 

variance using inverse gamma (0.5, 4).  

iii. Further Applications with bayes’ command 

Q18.10 Download heartsbwitz.dta, a heart disease study data set.  



 322 

a. Fit Bayes’ logistic regressions and provide comment 

b. Fit Bayes’ logistic regressions, this time with asis option to prevent dropping the variables, and 

nomleinitial option to prevent use of initial ML estimates; provide comment 

*Bayes’ survival regression 

Q18.11 Download hip3.dta, a hip replacement study data.  

a. Fit a streg and bayes’ survival Weibull PH models    

b. Obtain diagnostic for male and provide comment 

* bayes’ Panel data  

Q18.12 Download pig.dta, data on pigs weight gain study.  

a. Fit a two-level random-intercept, random-coefficients panel regression and Bayes’ panel 

regression; provide comm**ents  

b. Fit a bayes panel model in Q18.12_a with default output, without melabel option, and explain 

its components.   

c. Fit Bayes’ random-coefficient model to allow different (pigs) growth rates; provide comments 

* bayes Autoregressive models  

Q18.13 Download yd.dta on log of US income.  

a. Fit bayes’ AR(1)model for log(yd). 

b. Use a uniform (-1, 1) prior to ensure AR(1) stationary assumption & provide comment 

c. Select the best bayes’ AR model by comparison of AR(1/5)models 
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CHAPTER 19 Linear Machine Learning Models for Prediction and Inference 

19.0 Machine Learning and Econometrics. Statistical Machine Learning (ML) deals with bid 

data using machine, i.e. computer. That often means when the number of regressors, also called 

features, inputs or predictors in ML, are larger than the number of observations. In that context, 

the usual traditional econometrics models, especially the least squares-based models, become 

inapplicable. The ML approach have made impressive strides in developing models capable of 

quite accurate prediction for a response variable from a large number of predictors by exploiting 

very large data sets. Since prediction also occupies an important part of econometrics, there have 

been new attempts to adapt econometrics predictive models employing ML. However, inference 

rather than prediction is the main focus of econometrics, and this raises the question of the place 

of the ML approach in econometrics models and tools. The focus of most ML models so far has 

been on predictions of y from x; coefficient estimation has so far received much less attention in 

the ML literature. By contrast, the main focus of econometrics has been in developing a large body 

of work addressed to obtaining good (consistent and efficient) parameter estimates β from the 

underlying relationship between y and x. While econometrics has benefitted much from ML 

approaches to prediction, the models of ML inference are not as developed, and when available, 

as examined in the last section of this chapter, they are rarely consistent and often lack the type of 

asymptotic theory that justify consistency of classical econometric models. This contrast suggests 

ML can be employed in econometrics provided the application is for relevant �̂� tasks, that is, if the 

application goes through a ML prediction model or involves a predictive step, given very large big 

data inputs. One type uses new data to answer older questions; for example, predicting measuring 

change in poverty from satellite images; another is when the inference requires prior prediction as 

prominently employed by two-stage least squares for consistent coefficient estimates into which 

the first stage prediction enters as inputs, also examined later in this chapter. Therefore, most of 

ML models examined in this and particularly the next chapter on non-linear ML, focus on the 

accuracy of the predictive estimation that requires methods to reduce the scope for overfitting 

them. We discuss the ML linear models in this chapter and nonlinear models in the next chapter.   

19.1-Regression Overfitting. We estimate a function by linear and non-linear methods that share 

common features. As an example, with n=30 data points i=1, 2, . . . ,n that teach the method what 

type of function f to employ for estimation with j=1, 2, . . . , p predictors, each represented by xij 
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with corresponding response observations𝑦1, 𝑦2. . . , 𝑦𝑛. The sample employed trains the in-sample 

prediction using the training sample; the prediction accuracy on a different, out-of-sample data set. 

The goal is to find a function for f. either parametrically by linear methods, or non-parametrically 

by a non-linear method. Fig. 19.1 below represent three different methods to estimate a function 

such that Y≈ f(X). F. 19.1 shows three different methods of estimating the relationship between X 

and Y; p+1 coefficients 𝛽0, 𝛽1, . . . ,𝛽𝑝 by the least squares method.  

 

Fig. 19.1 Linear fitting with different degrees of Smoothing 

Fig. 19.1 Plot on the right assumes a linear model fitted to the training income data observation set 

(in red) of US Atlantic region of wage for men as a function of age and seniority to estimate their 

coefficients that are unbiased with minimal inaccuracy. The center non-parametric thin-plate spline 

plot estimation assumes no functional form of f function in order to get as close as possible the 

data points to improve the fit. for age and seniority with a function f that attempts to be as close as 

possible to the data points. The left plot demonstrates the same as the center using less smoothness 

with a rougher plot to obtain a perfect fit! While the first lacks sufficient accuracy indicated by the 

distance between observations and the true model (the yellow surface), the third overfits the model, 

picking up on too many unique features of the sample at hand. resulting in poor prediction when 

tested on a new, as yet unused set of wage data; the second is a compromise between the degree of 

smoothness and prediction accuracy.  

Fig. 19.1 provides a contrast in the applications of the two most commonly used methods of the 

parametric linear least squares and the non-linear, non-parametric k-nearest-neighborhood method. 

The linear regression fit with a continuous quantitative output variable predicts the outcome Y 

from 

�̂� = �̂�0 + ∑ 𝑋𝑗�̂�𝑗
𝑝
𝑗=1        (19.1) 
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The estimated coefficient values  �̂�𝑗 obtained from the gradient 𝑓′(𝑋) = 𝛽, a vector of inputs; the 

intercept estimate, �̂�0 in machine learning is called the bias, and chosen so as to minimize the 

residual sum of squares 

RSS(β)=∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2𝑁

𝑖=1  

However, the output can also be a discrete, qualitative type, varying as a classification; binary or 

categorical variables. Scatterplot 19.2 is a classification with a simulated training data set with the 

class variable G coded as blue for 0 or orange for 1. It fits a linear r regression by converting the 

continuous Y into a class variable according to  

 

Fig. 19.2 shows the outcome obtained with the training data with a binary two-class Y regression 

we note some instances of misclassification on either side of the decision boundary; such errors 

indicate the linear model rigidity. Let us now examine the regression/classification outcome with 

the more flexible nearest-neighborhood method, discussed in 11.2.  

 

Fig. 19.2-Linear Boundary Classification 

The training data set is now divided into k=15 nearest neighbor regions; each region defined by 

the 15 closest points 𝑥𝑖 in the training data and obtained corresponding�̅�𝑖; in general, with 

𝑁𝑘(𝑥) 𝑘 closest points to 𝑥𝑖we fit  

�̂�(𝑥) =
1

𝑘
∑ 𝑦𝑖𝑥𝑖∈𝑁𝑘(𝑥)        (19.2) 
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Fig. 19.3 shows the proportion of �̅�𝑖 in the neighborhood of 0 and 1and demonstrates �̂� for the 

binary classification G. The decision boundary is now more irregular because it responds to local 

values by choosing where the predicted values by majority tend to dominate. Here the number of 

k corresponds to the p parameters of the linear model; the effective number of parameters N/k is 

usually larger than p and deceases as we increase k because there would then be N/k 

nonoverlapping with a one parameter (a mean) fit in each k region.  

 

Fig. 19.3- Non-Linear Boundary Classification 

We note that there are now far fewer misclassified observations, and we cannot apply this method 

to the training data sum-of-squared errors since we would always obtain k=1! The linear model is 

smooth and tends to be stable but this is substantially the result of a linear decision boundary 

criteria. We call this linear model one with low variance but with potentially high bias. By contrast, 

the k=nearest neighborhood makes a few strong assumptions but the outcome is non-smooth and 

unstable=high variance and low bias. Therefore, we can increase the number of k to obtain 

increasingly improved fit to the training data but then the price is higher variance. There are also 

some methods that generalize the nearest neighbor approach. Kernel methods employ weights that 

decrease smoothly to zero with distance from the target instead of 1/0 weights used in the 

neighborhood approach and in high dimension p, the Kernel emphasizes some p more than others; 

locally weighted linear fits local rather than constant weight least squares; and the projections 

pursuit and neutral net models discussed latter rely on the sum of non-linear transformation of the 

linear model.  

 The boundary decision theory requires a loss function for penalizing prediction errors based most 

commonly on squared errors loss function L(Y, f(X))=(Y – f(X))2 with choice to criteria   
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EPE(f) = E(Y – f(X))2 

                                 =∫[𝑦 − 𝑓(𝑥)]2 Pr (𝑑𝑥, 𝑑𝑦) 

That leads to minimization of the expected error prediction by solving f (x)=E(Y|X=x). The 

nearest-neighborhood does this directly using the training data by averaging all 𝑦𝑖 with input 𝑥𝑖=x  

𝑓(𝑥) = Ave(𝑦𝑖|𝑥𝑖 ∈ 𝑁𝑘(𝑥)) 

Two approximations are possible: expectation by averaging over the sample or conditioning on 

some region near the target. The linear model does not condition on X, its averaging over the 

sample comes from assuming that the model is additively linear in its predictors. We can expand 

the binary classification regression with a categorical G function or 0-1 loss function to minimize 

expected errors respectively by 

EPE = Ex ∑ 𝐿[

𝐾

𝑘=1

ↅ
k
, �̂�(𝑥)]Pr (ↅ

k
|𝑋) 

�̂�(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈ↅ[1 − Pr (𝑔|𝑋 = 𝑥)| 

where �̂�(𝑥) is obtained by minimizing the length of the regressors. The solution, known as the 

Bayes classifier, is  

�̂�(𝑥) = ↅ
k
 𝑖𝑓 Pr(ↅ

k
|𝑋 = 𝑥) = 𝑚𝑎𝑥𝑔∈ↅPr )𝑔 = 𝑋 = 𝑥) 

The Bayes criteria allocate to the most probable class, using discrete distribution Pr(G|X); the error 

rate of this classifier is called the Bayes rate.  

If we condition the mean estimation of Y on the loss function rather than the predictors, that is on 

E|Y - f(X), the solution in that case is  𝑓(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌|𝑋 = 𝑥), a more robust solution than the 

conditional mean. We should mention that given finite N, we must impose as a restriction the RSS 

criterion, one based on the number of parameters, and on the unspecified function f(.)  

RSS (f )= ∑ (𝑦𝑖 −  𝑓(𝑥𝑖))
2𝑁

𝑖=1  

Often some restriction on the regression equations in a small data location such as a linear or low-

order polynomial function fitted in that neighborhood means the larger the size of the 
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neighborhood, the stronger the constraint and more sensitive the solution to the choice of a 

constraint.   

19.2- Model Selection by MSE. 

Model selection and assessment are closely related to model complexity. If the data is quantitative, 

or nearly so, e.g. with interval scale response, then the training data error loss function estimation 

between Y and 𝑓^(X) , L(Y, 𝑓^(X)), is typically based on either squared error or absolute error, as 

discussed in chapter 6. The average training error sample loss function is then given by  

𝑒𝑟𝑟̅̅̅̅̅ =
1

𝑁
∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

𝑁
𝑖=1       (19.3) 

The training error measurement should then be compared with the model expected test error in 

order to select and assess the best model complexity. This is because as the training data uses more 

data adapted to more complex underlying features of the data in order to decrease estimation bias, 

it will increase in variance; clearly a zero-training error is an overfit and will have poor expected 

test error. We seek some middle level of complexity that leads to minimum expected test error 

employing a tuning parameter α to minimize error by controlling complexity. This argument 

applies similarly with a qualitative or categorical response data, using either a 0-1 loss function or 

the probability 𝑝𝑘(𝑋) = 𝑃𝑟(𝐺 = 𝑘|𝑋) to obtain misclassification error; typically, we employ the 

log-likelihood loss function for the Poisson, gamma, etc. Given large data, we divide the set into 

three parts: training, validation and test sets; larger for the first, e.g. 50%, the rest as 25% and 25%. 

For the situations with inadequate data, there are two approaches to approximate the validation 

step analytically by AIC and BIC discussed in chapter 7, or by sample iteration with cross-

validation and the bootstrap. The point to note is that the bias-variance tradeoff differs for the 0-1 

as compared with the squared error loss, hence, t best choice of turning parameters result in very 

different error measurements for the two loss functions.  

Error minimization. in regression or classification this is achieved by obtaining the best 

trade-off between the squared error and variance by decomposing them. Start with assuming Y=f 

(X) +𝜀 where E(𝜀) = 0 & Var(𝜀) = 𝜎𝜀
2. Then the expected loss error at x=𝑥0 decomposes  

𝐸𝑟𝑟(𝑥0) = 𝐸[(𝑌 − 𝑓(𝑋0))
2

|𝑋 = 𝑥0 
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                                                    = 𝜎𝜀
2 + [𝐸𝑓(𝑥0) − 𝑓(𝑥0)]

2
+ 𝐸[𝑓(𝑥0) − 𝐸𝑓(𝑥0)]

2
   

 (19.2.2) 

                        =𝜎𝜀
2 + 𝐵𝑖𝑎𝑠2𝑓(𝑥0) + 𝑉𝑎𝑟𝑓(𝑥0) 

                              =Irreducible Error + Bias2 + Variance 

Usually, the more complex the model, the lower the estimation bias but the higher the variance.  

Optimism. A clearer approach to lowering error measurement is by fixing the training 

data set T and allowing other quantities to change, and the error will be average over the training 

sample 

 Err = 𝐸𝒯𝐸𝑋0𝑦𝑜[𝐿(𝑌0, 𝑓(𝑋0)| 𝒯]      (19.4) 

where 𝐸𝑇stands for the training sample error, and 𝐸𝑟𝑟 is estimated directly from the training sample 

to avoid difficult estimation of 𝐸𝑇, thus the average over the training sample given by  

err̅̅ ̅̅ =
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)

𝑁
𝑖=1        (19.5) 

(19.5) will be smaller than the training error because the model adapts to the training data to 

produce too optimistic an estimate of the training error. To measure optimism, first define in-

sample error for 𝑌0 at the end of each by  

𝐸𝑟𝑟𝑖𝑛 =
1

𝑁
∑𝐸𝑦𝑜[𝐿(𝑌𝑖

𝑜

𝑁

𝑖=1

, 𝑓(𝑥𝑖)| 𝒯] 

Then define optimism OP as the difference between the in-sample and training error averages: 

op ≡ Errin − err̅̅ ̅̅  

Typically, a positive measure since err̅̅ ̅̅  is generally biased downward; its average given by  

average optimism is the expectation of the optimism over training sets 

ω≡ Ey(op) =
2

𝑁
∑ Cov(�̂�𝑖, 𝑦𝑖)

𝑁
𝑖=1       (19.6) 
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Therefore, the harder the fit, the greater the covariance, resulting in greater optimism. We can then 

improve estimation of predicted error by adding an estimate for optimism to the training error 𝑒𝑟𝑟− 

by starting with the key equation 

EyErrin = Ey(err)̅̅ ̅̅ ̅ +
2

𝑁
∑ Cov(�̂�𝑖, 𝑦𝑖)

𝑁
𝑖=1      (19.7) 

Modifying for a linear fit   𝑌 = 𝑓(𝑋) + 𝜀 with d basis linear functions or inputs 

∑ Cov(�̂�𝑖, 𝑦𝑖) = 𝑑𝜎𝜀
2𝑁

𝑖=1        (19.8) 

(19.8) is the basis for the definition of the effective number of parameters discussed above. AIC 

and BIC work with this method, by adding an OP component to the training error 𝑒𝑟𝑟̅̅̅̅̅. By contrast, 

cross-validation and bootstrap methods are direct estimates of the extra-sample error.  

AIC. The in-sample error estimate with an average OP estimate is  

𝐸𝑟�̂�𝑖𝑛 = 𝑒𝑟𝑟̅̅̅̅̅ + �̂�       (19.9) 

That applied to a loss function with d parameters and an estimate of the noise variance �̂�𝜀
2 leads 

to 

𝐶𝑝 = 𝑒𝑟𝑟̅̅̅̅̅ + 2.
𝑑

𝑁
�̂�𝜀

2 

Hence, we adjust the training error by a factor proportional to the number of d (basis functions). 

The Akaike AIC is similar and uses a log-likelihood loss function 

loglik = ∑logPrθ̂(yi

N

i=1

) 

Where𝑃𝑟𝜃(Y) is a family of densities for Y, including the “true” density, and 𝜃^ is the ML estimate 

of θ and loglik is the maximized log-likelihood. For example, the logistic regression for binomial 

log-likelihood is  

AIC= - 2/N .loglik + 2.d/N 

For the Gaussian model with known constant variance, 𝐶𝑝 is equivalent to AIC; the AIC criterion 

selects a model with the smallest AIC value over the set of all models.  



 331 

BIC. The Bayesian is also implemented by maximizing a log-likelihood by  

BIC= - 2.loglik+(log N).d      (19.10) 

The BIC statistic times 1/2 is known as the Schwarz criterion; under the Gaussian constant variance  

assumption, the BIC has a known Gaussain constant variance, BIC is written as  

BIC =
𝑁

𝜎𝜀
2
[𝑒𝑟𝑟̅̅̅̅̅ + (𝑙𝑜𝑔𝑁).

𝑑

𝑁
𝜎𝜀

2] 

 demonstrating that BIC is proportional to AIC with a factor of AIC (𝐶𝑝) with 2 replaced by log N. 

With N >≈ 7.4, BIC penalizes the complex model more heavily in preference to a simpler model. 

However, the relationship of the BIC to the Bayesian approach shows the difference between AIC 

and BIC. Suppose we have 𝑀𝑚 number of potential models to chooise from each with 

corresponding parameter 𝜃𝑚 for m=1, 2, . . . . , M; given a prior Pr(𝜃𝑚|𝑀𝑚) and for each model 

results in the posterior probability with Z representing training data {𝑥𝑖, 𝑦𝑖}1
𝑁as 

 Pr (𝑀𝑚|𝑍) ∝ Pr (𝑀𝑚). Pr (𝑍|𝑀𝑚) 

Use the posterior odds to compare two models 

Pr (𝑀𝑚|𝑍)

Pr (𝑀ℓ|𝑍)
=

Pr (𝑀𝑚)

Pr (𝑀ℓ)
.
Pr (𝑍|𝑀𝑚)

Pr (𝑍|𝑀ℓ)
 

The last quantity on the right represents the contribution of the data to the posterior odds and is 

known as the Bayes factor. 

𝑙𝑜𝑔𝑃𝑟(𝑍|𝑀𝑚) = 𝑙𝑜𝑔𝑃𝑟(𝑍|𝜃𝑚, 𝑀𝑚) −
𝑑𝑚

2
. 𝑙𝑜𝑔𝑁 + 𝑂(1) − 2𝑙𝑜𝑔𝑃𝑟(𝑍|𝜃𝑚, 𝑀𝑚) 

This is equivalent to the BIC criterion, and minimizing it leads to choosing a model with the 

approximately largest posterior. BIC is asymptotically consistent and will select the correct model 

as N →infinity. That motivates the difference with the AIC which selects more complex models as 

N →infinity, though with finite sample, the BIC selects models too simple compared to the AIC. 

19.3 Orthogonality condition.  

Machine learning models are easily interpretable, still applicable to transformations of the original 

predictors, generalizations that are called the basis-function approach, for prediction that approach 
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can prove more effective than non-linear models; the latter are in fact generalizations of the linear 

models. 

The linear model assumes a linear regression function E(Y|X); X predictors have several 

varieties: quantitative ones and their transformations, basis-function expansions, and different 

levels of qualitative inputs, and interactions between predictors. The least squares method assumes 

inputs orthogonality. Coefficient estimates do not affect each other, but real data are never 

orthogonal, and therefore least squares orthogonality must be enforced. Suppose a p column of 

input data matrix X consisting of 𝑥1, 𝑥2, . . . ,𝑥𝑝vector of N ones orthogonal to each other, let 1=𝑥0 

and define �̅� = ∑ 𝑥𝑖/𝑁𝑖 . This simple regression involves two steps: i) regress x on 1 to obtain the 

residual z=x – �̅�.1; ii) regress y on z to obtain the coefficient �̂�1. In this approach, the simple 

univariate “regression of b on a with no intercept “orthogonalizes” b with respect to a for the case 

of two inputs 𝑥1&𝑥2. First the vector of 𝑥2 is regressed on the vector of 𝑥1; since the two vectors 

are orthogonal to each other as shown in Fig. 19.4, that leaves only the residual vector z; then the 

regression of y on z results in the multiple regression coefficient on 𝑥2. Adding the projections on 

each 𝑥1and z results in the OLS fit �̅�.  

The generalization to k multiple outputs 𝑌1, 𝑌2, . . . , 𝑌𝑘 is possible with corelated errors (ԑ1, ԑ2, . . 

. , ԑ𝑘) if we modify a RSS of a multivariate Gaussian regression weighted by Cov(ԑ)=𝚺 

𝑅𝑆𝑆(B;  𝛴) = ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
𝑇 ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

−1

⬚

𝑁

𝑖=1

 

The procedure is known as the Gram-Schmidt multiple regression. Orthogonalization is a 

powerful idea and we will return to its role with reference to ML inference by partialization in 

19.4 below. 

19.4 Selection by regressor exclusion. The least squares regression results may be inadequate 

either because they are not sufficiently accurate and require some kind of shrinking method to 

reduce variance at the expense of acceptable sacrifices for bias, and/or because interpretation with 

a large number of inputs often requires selection of a smaller number of inputs with the strongest 

impact in favor of sacrificing less important details.  
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Fig. 19.4-Orthogonalization 

 

The Best subset regression identifies a subset of inputs 𝑘 ∈ {0, 1, 2, . . . , 𝑝} that produces the 

smallest sum of residual error; the choice of k requires an assessment of the bias-variance tradeoff 

discussed above and typically involves the smallest model that minimizes an estimate of the 

predicted expected error. Here we examine a number of linear regressions which prove that. 

Selecting inputs in steps by adding and excluding them sequentially provide procedures to achieve 

that goal. If we use Stepwise Model Selection as the number of p increases, the selection process 

through all possible alternatives quickly becomes impractical (typically once p > 40); therefore, 

we need a feasible search method. Forward-stepwise selection begins the search with the intercept 

and then adds sequentially to the model a new predictor to lower its predicted error. This is a greedy 

process in that it works by adding predictors until the fit stops improving; though we cannot 

compute the best subset, we can compute stepwise sequences for all p including when p ≥N. By 

contrast, Backward-Stepwise selection begins with the p full model and excludes the predictors 

that have the least impact on improving the fit; hence it only works with N>p. The outcome tends 

to be similar by either process and some software combine both at each step so as to minimize the 

AIC score. A more constrained selection is by forward step stage (FS) regression that begins like 

stepwise by at each step identifying the variable most correlated with the current residual and 

adding that to the current coefficient of that variable; the process continues until no variable is 

correlated with the residual; that is, we fit the least squares model when N>p. Since at each step 

only the current variable is adjusted, all other variables remain unadjusted, this selection method 

can take many p steps to produce the least squares fit. However, the “slow fitting” regression is 

advantageous in high-dimensional applications see below. 
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19.6 Regularization & Shrinkage Estimators. The linear ML models frequently employ shrinkage 

estimators that reduce the number of main variables of interest to a relatively small number. In this 

section, we examine the most common linear shrinkage models, namely Lasso, Ridge, elastic net, 

Adaptive Lasso and Smoothly clipped Absolute Deviation (SCAD) and compare their predictive 

performance when employed as linear regression econometric models. These models have become 

increasingly popular when the traditional estimators such as the OLS are no longer applicable, in 

particular when the number of regressors are larger than the number of observations. In that 

context, shrinkage estimators offer an approach to identification of a set of relevant variables from 

a much larger pool of covariates, known as variously as predictors, features, or regressors, based 

on the fundamental assumption of sparsity that the number of non-zero coefficients are relatively 

small. We should note at the outset that unlike the main focus of econometrics on parameter 

inference, the focus of machine learning shrinkage models has been on obtaining prediction by the 

best approximation for the response (dependent, or endogenous) variable, therefore side-stepping 

parameter significance and interpretation of the regressor coefficients. Machine learning models 

usually attempt to reduce the number of model predictors by separating the zero coefficients from 

the non-zero. The econometrics approach, however, is also addressed to the distinction between 

true zero observations in the data generating process and those that appear close to zero because 

of noise and measurement error by taking into account regressor signals, typically based on their 

importance in terms of the size of their standard errors and by t or F tests. Hence, while machine 

learning treats data as “pure information”, in econometric analysis, the signal to noise ratio has an 

important role in identifying the relevant control (zero or close to zero) regressors from the 

variables of interest, and provide different solutions by conducting valid statistical inference with 

shrinkage estimators on the coefficients of interest. Although inference has not been the focus of 

machine learning, more recently ML econometric applications for inference have received more 

attention, see section 19.12 on ML inference below, and Chan & Matyas (2022) for a good 

introduction to linear machine learning.      

Subset selection procedures of either retaining or disposing variables creates a discrete 

process leading to high variance and inability to reduce predicted error of the full model. Shrinkage 

selection methods are more continuous and hence, produce lower variance than step-based 

methods. We will also discuss the justification for this approach in terms of its asymptotic oracle 

properties. The context for machine learning regression is almost always when p > N. The 
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application of the least squares linear regression is not valid in that context if the matrix X/X does 

not have full rank, then p1 predictors with zero coefficients values are deleted a priori when p1 < 

N < p. By contrast, a shrinkage estimator imposes a restriction on the length of the vector �̂�; as 

this length is fixed, the idea is to obtain the best response variable approximation by setting to zero 

or close to coefficients as mis-identified predictors that are not useful in predicting yi ; shrinking 

the β vector by setting some or even most of the coefficients equal to zero would increase the 

degree of freedom for the estimation of other, important non-zero predictors. This is achieved by 

optimizing 

�̂�= 𝑎𝑟𝑔𝛽 min𝑔(𝛽; 𝑦, 𝑋) 

s.t. p (β; α) ≤ c 

where p (β; α) is the function that regularizes the length of β vector, similar to the penalty function 

employed in time-series econometrics to minimize the number of regressors, and the total length 

of β is bounded by the constant c > 0 selected a priori. The choice of c is of critical importance 

since if c is too small, the small coefficient values due to measurement error or being noisy will 

incorrectly be regarded as zero values. The optimization can also be expressed in terms of the 

Lagrange multiplier λ, fixed by the researcher to reflect c the length of the a priori selected 

coefficient vector, as 

�̂�= 𝑎𝑟𝑔𝛽 min𝑔(𝛽; 𝑦, 𝑋)+ λ p (β; α) 

There is a one-to-one correspondence between λ and c, with λ being a decreasing function of c; 

and λ→ ∞ as c→ 0, the Lagrangian approaches the OLS estimator under p < N assumption. λ is 

called the tuning parameter to be selected by cross validation (CV), see below.  

Different regularizers with different definitions for p (β; α) produce different shrinking estimators. 

In this chapter we examine ML shrinkage models the Least Absolute Shrinkage and Selection 

Operator (Lasso),  based on p(β)=∑ |𝛽𝑖|
𝑝
𝑖=1  , the Ridge estimator based on p(β)=∑ |𝛽𝑖|

𝑝
𝑖=1

2, the 

elastic net based on p(β)=∑ 𝛼|𝛽𝑖|
𝑝
𝑖=1 + ∑ (1 − 𝛼)|𝛽𝑖|

𝑝
𝑖=1

2, and Smoothly Clipped Absolute 

Deviation (SCAD) and adaptive Lasso (adaLasso) among other linear ML estimators. 

Ridge Regression selects coefficients by applying a penalty on their size, shrinking them, 

though without excluding any of them, by minimizing a penalized residual sum of squares as 
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�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1 + 𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1 }   (19.11) 

The complexity parameter here that controls for the amount of shrinkage is λ ≥ 0; larger values of 

λ results in larger amounts of shrinkage. The equivalent way to express this relationship is by the 

constrained imposed on the model parameters as 

�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1     (19.12) 

sub. to ∑ 𝛽𝑗
2𝑝

𝑗=1 ≤ 𝑡 

Where the λ and t have one-to-one correspondence, and the solutions should have standardized 

mean and standard deviation for equivalent outcomes. The Ridge penalty term is also called the 

ℓ2penalty. The penalty term excludes intercept 𝛽0; in effect minimization can be separated into 

two steps, first demean each 𝑥𝑖 by  𝑥𝑖𝑗 = 𝑥𝑖𝑗 − �̅�𝑗  and first estimate 𝛽0 by  �̅� =
1

𝑛
∑ 𝑦𝑖

𝑁
1  . Then the 

ridge regression shrinks the rest of the coefficients without the intercept. We also note that the 

complexity control parameter becomes a part of the criterion for deciding the coefficient 

significance level by the effective degree of freedom as a function of λ as well as the number of p 

inputs. With the inputs orthogonal to each other, the ridge estimates are the least squares estimates 

scaled by �̂�𝑟𝑖𝑑𝑔𝑒 = �̂�/(1 + 𝜆).The ridge regression can also be expressed in terms of a posterior 

of a regression with appropriate Bayesian priors. Suppose …, and the parameters are independent 

of each other, and distributed as N(0, т2), the negative log-posterior of, �̂�𝑟𝑖𝑑𝑔𝑒 with assumed 𝜏2, 

𝜎2known, is equal to λ=
𝜎2

𝜏2  for the expression inside the curly bracket above. That is, the ridge 

estimate is the mode of the posterior distribution and also its mean, given the Gaussian posterior.  

Lasso Regression. A more constrained shrinkage regression that imposes zero values on 

the small, insignificant coefficients, and applies shrinkage only to the subset of remaining 

parameters is the Least Absolute Shrinkage and Selection Operator (Lasso) regression; defined by  

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1       (19.13) 

sub. to ∑ |𝛽𝑗|
𝑝
𝑗=1 ≤ 𝑡 

or in the equivalent Lagrangian form as  



 337 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2𝑁
𝑖=1 + 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1 }   (19.14) 

Hence, the ℓ1Lasso penalty  ∑ |𝑝
𝑗=1 𝛽𝑗|substitutes the ℓ2 Ridge penalty∑ 𝛽𝑗

2𝑝
𝑗=1 ≤ 𝑡 . This brings 

out the contrast between the two error minimalization solutions. The Ridge regression employed 

all parameters, with none set to zero, to minimize a continuous convex set with a closed-form, 

linear solution, while the Lasso zero exclusion on a subset of the parameters contains a continuous 

set but also zero regions, and is therefore a non-linear discrete function with no closed form 

solution and requires a more complex, iterative minimization method. This is because the Lasso 

constraint with sufficiently small t sets some of the coefficients exactly equal to zero. Therefore, 

if t is set as  𝑡0 = ∑ |�̂�𝑗  |
𝑝
1 , then  �̂�𝑗 = �̂�𝑗

𝑙𝑠 (the least squares estimates), while with t= 
𝑡0

2
 for 

example, then on average, we shrink the least squares estimates by 50%. As with the Ridge 

regression, the Lasso parameters are standardized as 𝑠 =
𝑡

∑ |�̂�𝑗 |
𝑝
1

 , s=1.0 leads to the least squares 

solution; the estimates shrink toward zero as s → 0.  

Bridge estimator. The control for ML different estimators to reduce the size of the 

coefficient vector measuring the length of the vector β is expressed by assigning a norm to each 

estimator. Let us denote Lγ norm ||β||γ of a vector β=(β1, β2, . . . ,βp)/ and define it as 

||β||γ = (∑ |𝛽|𝛾𝑝
𝑖=1 )

1/𝛾 
   𝛾 > 0       (19.15) 

(19.15) encompasses a general class of linear ML models in terms of the norm of their control 

variable and is known as the Bridge estimator. When γ=1, (19.15) becomes then the L1 norm of β 

leading to the Lasso estimator; when γ=2, then the L2 norm of β leads to the Ridge estimator. A 

simple example for the norm of Lasso is β=(β1, β2), then the L1 norm of β is ||β||2 = √|𝛽1|2 + |𝛽2|2. 

An advantage of the L1 norm (Lasso) is that it can produce parameter estimates that are exactly 

zero, that is, elements of �̂� can be exactly zero, unlike the L1 norm (Ridge) that does not produce 

�̂� coefficient estimates exactly equal to zero.  

The bottom part of Fig. 19.4 compares the contour plots of Ridge and LASSO for p=2. 19.4a shows 

the plot of LASSO when |𝛽1| + |𝛽2| = 1; if one of the coefficients is in fact zero, the contour of 

the least squares will intersect with one of the corners first to identify the appropriate coefficient 

as 0, i.e. with  
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0 + |𝛽2| = 1, the contour will be at one of the corners defined by 1 and 0 coordinates. By contrast, 

19.4b plot for Ridge has no sharp corners (no �̂� element exactly equal to zero). However, the Ridge 

has a computational advantage over the Bridge since when γ ≠ 2, there are no closed form 

solutions for constrained optimization of �̂� vector, requiring solution by a numerical method, while 

γ = 2, the Bridge offers a closed form solution. When γ ≥ 1, the regularizer is a convex function, 

making available the whole set of algorithms for optimization while when γ < 1 it becomes a more 

complex problem and that affects the asymptotic properties of the estimators that are different 

when γ < 1 and γ ≥ 1.  

Fig. 19.4 compares the selection approaches examined above for the case of orthogonal inputs. 

sign indicates the direction of the Lasso argument (± 1), 𝑥+the positive part of x, estimators show 

by a broken line, and the 450 lines those of the unrestricted estimates as reference. Each method 

applies a single transformation to the least squares coefficient estimate �̂�𝑗. The best subset drops 

all inputs smaller than the Mth largest, a type of “hard thresholding”; the Bridge by a proportional 

shrinkage and Lasso by converting each coefficient by a constant factor λ, truncated at zero called 

a “soft thresholding”. 

 

Fig. 19.4 Shrinkage Methods 

 

Fig. 19.5 Lasso and Ridge Shrinkage 
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Fig. 19.5 illustrates the difference between Lasso and Ridge shrinkage methods. The solid areas 

are the constraint regions where |𝛽1| + |𝛽2| ≤ 𝑡 & 𝛽1
2 + 𝛽2

2 ≤ 𝑡2while the ellipses are the contours 

of the least squares error function. Both the Ridge and Lasso methods find the solution here where 

the elliptical contours touch the constraint region, smoothly for the Ridge circle with no corners 

but at a corner for the Lasso diamonds that with corners for regions where parameters are set 

exactly at zero. The contrast between the Ridge and Lasso methods raises the question of their 

generalization by adding a new parameter q ≥ 0 that varies between no zero Ridge parameters and 

some exactly zero Lasso parameters viewing their estimates in terms of Bayes priors.  

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1 + 𝜆 ∑ |𝛽𝑗|

𝑞𝑝
𝑗=1 }    (19.16) 

Fig. 19.6 shows the contours of constant values of  ∑ |𝛽𝑗|
𝑞𝑝

𝑗=1 where |𝛽𝑗|
𝑞 are the log-prior density 

of 𝛽𝑗 and also equi-contours of the prior distribution of the parameters, for the case of two inputs 

at different values of q. At q=0 corresponds to the variable subset selection using the number of 

non-zero parameters, q=1 and q=2 to that of the Lasso and the Ridge regressions respectively. The 

values of q ∈ (1, 2) therefore offer a compromise between the Ridge and Lasso regressions.  

Fig. 19.6 Shrinkage comparison by Bayes Priors 

 

However, with q > 1, |𝛽𝑗|
𝑞  remains differentiable at 0, so does not set some coefficients exactly 

equal to zero as in Lasso.  

Elastic net. We can specify the regularizer in more general terms than one based only on 

the norm. Elastic net proposed by Zou and Hastie (2005) is a linear combination between ℓ1 and 

ℓ2 norms with Lasso and Ridge as special cases.  

𝑝(𝛽;  𝛼) = 𝛼1||𝛽||1 + 𝛼2||𝛽||2
2      𝛼 ∈ [0, 1]  

When (𝛼1, 𝛼2)=(1, 0), reduces to Lasso and when (𝛼1, 𝛼2)=(0, 1) to Ridge. The exact values of 

(𝛼1, 𝛼2) are specified by the researcher together with γ via cross validation; hence, unlike Bridge, 

elastic net has more than one turning parameters. A common choice is (𝛼2 = 1 − 𝛼1) with 𝛼1 ∈
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[0, 1], a case known as an affine combination of the ℓ1 and ℓ2 norm. The above suggests an elastic 

net penalty as  

𝜆 = ∑ (𝛼𝛽𝑗
2 + (1 − 𝛼)|𝛽𝑗|)

𝑝
𝑗=1        (19.17) 

The elastic net overcomes some limitations of Lasso and Ridge by striking a balance between the 

two. Fig. 19.7 shows the elastic net and ℓ𝑞 penalty with contours of ∑ |𝛽𝑗|
𝑞𝑝

𝑗=1 set at q=1.2 and 

elastic net penalty, sum expression in front of λ in (19.17) at α=0.2. The elastic net selects inputs 

like Lasso and shrinks correlated inputs together like Ridge; it shows a great advantage over  𝐿𝑞 

penalties; here elastic net has non-differentiable, sharp corners while the q=1.2 penalty does not.   

Closely related to the Lasso is the relatively recent Least Angle Regression (LAR); rather than 

fitting a variable toward zero, it moves its coefficients toward its least squares estimates, hence 

causing its correlation with the error term to decrease in absolute value. The process is stopped as 

soon as another 

Fig. 19.7- ℓ𝑞Penalty  

 

variable reaches the same correlation with the error term, then that variable is added to the active 

set and their coefficients tied together decrease toward the least squares value. The process 

continues until all the variables are included with a full least squared fit. With centered data to 

remove the intercept, if p > N-1, the LAR reaches zero correlation residual after N -1 steps. The 

LAR makes the smallest and equal angle with each of the predictors.  

However, we should note that in the ML literature, the difference between unbiasedness and 

consistency is not always clear, while in econometrics that distinction is the basis of how 

asymptotic distributional properties are formulated. We should thus interpret the unbiasedness 

feature of liner shrinkage models as a consistency property. 
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SCAD & AdaLasso. The increased weighting by the size of non-zero coefficients of some 

variables by imposing a restriction on the tuning parameter γ, as a means of reducing the vector of 

coefficients, implies that Lasso estimates are biased due to the potential misspecification that 

would undermine the potential statistical significance of some predictors. An alternative shrinkage 

estimator that addresses the issue of estimation LASSO biased is Smoothly Clipped Absolute 

Deviation (SCAD). SCAD has three features: unbiasedness, addressed to a Lasso biased estimate, 

sparsity for a threshold role that sets unnecessary variables to 0, and continuity in data. The first 

makes the SCARD regularizer a function of the tuning λ itself. The second, while sparsity of SCAD 

divides the parameter space into zero and non-zero sectors, unlike Lasso, the penalty term for 

SCARD does not increase when the magnitude of the coefficient is large, that is, when |β| exceeds 

a certain magnitude. Fig. 19.2 shows that all four estimators have increased penalty as the 

coefficient size increases; and the rate of change equals the tuning parameter, λ; both Ridge and 

elastic net treat large coefficients similarly but for the latter the penalty rate of change for 

coefficients close to zero is larger than for the former, plots (c) v. (b); hence, Ridge pushes small 

coefficients to zero. By contrast, the SCAD behaves like Lasso when coefficients are small but the 

SCAD penalty remains constant when the coefficients are large as in plot (d), helping to improve 

estimation bias of ML estimators like Lasso. 

 

 Fig. 19.8-Linear Model Penalties.  

Adaptive Lasso (adaLasso) is a Lasso modification that has fewer variables and hence better 

model-selection properties. AdaLasso takes the consistent estimator information, and applies 

notably larger penalties to the coefficients close to zero by assigning them weights as  



 342 

𝑘𝑗 = 1/|�̂�𝑗|
𝛿, 

where δ > 0; “1./” indicates element-wise division, |β| denotes an element-by-element absolute 

value operator, and �̂� is some consistent estimator of β. We note that employing a consistent 

estimator for the construction of the weight is a drawback of adaLasso since a consistent estimator 

may not be available when p > N. Instead of setting K-fold CV for J variables 𝑘𝑗= 1, it starts CV 

Lasso with 𝑘𝑗= 1, but then adapts the second Lasso by excluding �̂�𝑗=0 and for the remaining sets 

has 𝑘𝑗 = 1/|�̂�𝑗|
𝛿, with 𝛿=1 so as to select variables with larger coefficients to receive a smaller 

penalty. AdaLasso, Sou (2006), is defined by  

�̂�𝑎𝑑𝑎= 𝑎𝑟𝑔𝛽 min𝑔(𝛽; 𝑦, 𝑋)+ λ ∑ 𝑤𝑗|𝛽𝑗|
𝑝
𝑗=1       (19.18) 

Where 𝑤𝑗 > 0 are weights for j=1, 2, . . . , p. predictors predetermined by the researcher. The 

adaptive nature of this estimator stems from its vector of weights 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑝)′ being 

based on any consistent estimator of β. The default is to have one adaptive step, CV selection of 

tuning parameter and model selection based on BIC or plug-in iterative used for estimation rather 

than prediction, see below. Unlike Lasso, the adaLasso has important Oracle properties discussed 

below that the standard LASSO does not possess. 

Group Lasso. This mrthod applies where the predictors belong to pre-definte groups, for 

example dummy variables presenting the levels of categorical predictors. In such instances we 

wold like to shrink and select the members of a group together, and the group Lasson can achieve 

that. Divide the p predictors in L goups with an 𝑋ℓ matrix and a coefficients vector of 𝛽ℓ, then the 

group Lasso minimizes the  convex set 

𝑚𝑖𝑛𝛽𝜖ℝ𝑝(||𝑦 − 𝛽01 − ∑ 𝑋ℓ𝛽ℓ||2
2𝐿

ℓ=1 + 𝜆 ∑ √𝑝ℓ||𝛽ℓ||2
𝐿
ℓ=1     (19.19) 

Where √𝑝𝑗 acounts for the changing group sizes, and || .||2 is the Eulidian (unsquared) norm; for 

some values of λ, an entire group of predictors may be dropped from analysis. Group Lasso is 

employed when interpreting the coefficients requires the sub-set of variables to be non-zero, for 

example a categorical variable with M options where each of M dummies represent a single 

category and interpretation becomes problematic if some of the coefficients are zero. In this case 

it makes sense to group the coefficients together to ensure sparsity at the categorical rather than 

individual dummy level. The construction of group Lasso imposes the ℓ2 norm (like Ridge) on the 
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grouped coefficients (none exactly zero) while imposing ℓ1 as Lasso to each of the continuous 

variable coefficients and the collective coefficients of the categorical variables. 

19.5 Oracle properties of Shrinking Estimators.  

The asymptotic distribution of linear shrinking estimators is usually examined in terms of their 

Oracle properties. Oracle estimators share the same properties as estimators with the correct set 

of covariates; given that, Oracle estimators have the ability to ‘foresee’ the correct set of covariates. 

To define Oracle properties, rearrange the true vector 𝛽0 so that all non-zero values are grouped 

into one sub-vector, all zero values into another sub-vector, both containing corresponding 

coefficient indices. Let  

Α={j:𝛽0𝑗 ≠ 0} & �̂� = {𝑗: �̂�𝑗 ≠ 0} and 𝛽0 = (𝛽0𝐴
′ , 𝛽0𝐴𝑐

′ ) & �̂� = (𝛽𝐴
′ , 𝛽𝐴𝑐

′ ). Then estimator �̂� has the 

oracle Properties if  

Selection Consistency: lim
𝑁 →∞

Pr(�̂� = 𝐴) = 1 and 

Asymptotic normality: √𝑁(�̂�𝐴 − 𝛽𝐴)
𝑑
→ 𝑁(0, 𝛴)  

where the variance-covariance matrix 𝛴 for the oracle estimator defined as 

�̂�𝑜𝑟𝑎𝑐𝑙𝑒=𝑎𝑟𝑔𝛽:𝛽𝐴𝑐=0
min𝑔(𝛽)      (19.20) 

(19.20) has the same asymptotic distribution as the estimator with only the non-zero variables. We 

note that selection consistency is a weaker condition than the traditional statistical consistency 

employed in econometrics since it only requires the ability to discriminate between zero and non-

zero coefficients. We can view the ML estimators discussed above in terms of the Oracle 

Properties. It is clear that neither Lasso nor Ridge has oracle properties; Lasso estimation is 

inconsistent due to weighting non-zero coefficients toward zero, while Ridge does not possess 

selection consistency. By contrast, adaLASSO, SCAD and Group Lasso all have oracle properties; 

this is a reason for the popularity of adaLasso.   

19.6 Principal Components Analysis (PCA). 

 An alternative approach to solving the p >N dimensionality problem is to retain all regressors but 

group them into a limited number of sets with largest intra-group variation and assess their impact 
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on the response variable. Chief among them is the Principal Components Regression (PCR) that 

has a derived predictor column 𝑧𝑚= 𝑥𝑣𝑚 that is orthogonal. Then, regression of y on 𝑧1, 𝑧2,

. . . , 𝑧𝑀for M ≤ p becomes just a sum of the univariate regression 

�̂�(𝑀)
𝑝𝑐𝑟 = �̅�1 + ∑ 𝜃𝑚𝑧𝑚

𝑀
𝑚=1        (19.21) 

where 𝜃𝑚 =‹𝑧𝑚, 𝑦›/‹𝑧𝑚, 𝑧𝑚›. The solution expressed in terms of 𝑥𝑗 coefficients is  

�̂�𝑝𝑐𝑟(𝑀) = ∑ 𝜃𝑚𝑣𝑚
𝑀
𝑚=1        (19.22) 

As with the Ridge, the PCR coefficients should first be standardized to make them scale 

independent. M=p leads to the least squares estimates, while M < p leads to a reduced form similar 

to the Ridge; while Ridge shrinks all p toward zero, the PCR drops p – M smallest components.  

A linear combination alternative to PCR is the Partial Least Squares (PLS) that uses both 

x and y variables, with the first combination as φ1𝑗 = 𝑥𝑗 , 𝑦 for each j and drives the first PLS as, 

𝑧1 = ∑ �̂�1𝑗X𝑗𝑗  . Hence, each 𝑧𝑚is weighted by the extent of their univariate effect on y. Then, y is 

regressed on 𝑧1to orthogonize all 𝑥𝑗 with respect to 𝑧1to obtain θ̂1and coninue until all M ≤ p 

directions are obtained. PLR seeks directions with high variance and high correlation with y.  One 

way to view the Ridge shrinkage input vector is in terms of of the number of components used in 

PC. Fig. 19.9 displays PC for some data points of the input vectors 𝑋1 & 𝑋2. The largest PC is the 

dirction that maximizes the variance of the projected data; the smallest PC minimizes that variance. 

Ridge regression projects y onto these components, and then shrinks the coefficients of the low-

varaiance components more than the high-varaince components, see Tibshrini et. al. (2016).  

Fig. 19.9 PC Vectors  
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High Dimensional Problem: p≥M . The traditional application of PCA regression or 

classification is in low low dimension N > p where diminsion refers to the size of the p vector. We 

say a regression is in high dismension when p≥N . Here are two examples of analyses in high 

dimenstional: 

i. Instead of predicting blood pressure based solely on age, sex, etc. of the patient, we can include in 

the predictive model half a million rellatively common individual DNA mutations with N≈200 but 

p≈500,000 to obtain more accurate predictions.   

ii. Understading peoples’ hopping patterns can employ the users’ search terms in a “bag-of-words” 

model (see chapter 20). For each user, each of the p search terms is recorded as (0) for present and 

(1) for absent resulting in a large binary feature vector then with N≈1000, for example, p would be 

much larger.  

PCA regression and classifications  are called supervised PCA  because the analysis is guided in 

terms of the relationship of featues to the outcome, in contrast to unspervised PCA to an analysis 

without a dependent application, used mainly to divide a large number of observations into a 

smaller homogeous clusters discussed below.  If N=p, then supervised PCA  regression will have 

a perfect fit. We would then have very poor prediction by the test set, as the regression line is too 

flexible and overfits the data. Moreover, the traditional model selections AIC and BIC do not work 

since estimated variance would be zero and �̂�2= 1. To aviod overfitting, we must shrink the p 

dimension by Lasso and Ridge methods or cluster the features into a very small number of PC 

predictors.   

PCA should be modified for the context of  high demensional regression, involving 

univariant regression of the outcome on each of the predictors and a method of aggregating them 

into a linear combination of a limited number of components with both (a) high variance and 

(b)significant correlation with the outcome, presented in the following algorithm as a procedure to 

find the combinations that meet the optimal (a) and (b): 
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19.1. Algorithm for Supervised Principal Components 

 

The choice for step (1) and (2b) depends on the kind of regression outcome , commonly the 

univariant OLS coefficients for (1), and linear least squaers model for (2b). The relationship 

between features and the outcome in supervised PCA can also be expressed in terms of an 

underlying latent variable U : 

𝑦 = 𝛽0 + 𝛽1𝑈 + 𝜀 

Consider also a j set of measurement observations for p for which  

𝑋𝑗 = 𝛼0𝑗 + 𝛼1𝑗 + 𝜀𝑗  , 𝑗𝜖𝑝 

With the mean zero error terms independent of all other random variables in the corresponding 

regression. The goal here is to identify Ƥ, and estimate U in order to fit the prediction model. Then 

we can express the algorithm as; in step (1) we estimate the set Ƥ ; given Ƥ̂ , we use the argest PC 

in step (2a) to estimate U, and finally, fit the regression model in step (2b) to estimate the model’s 

coefficients. The leading PC may be be consistent if it is affected by the presence of a large number 

of “noise” features, therefore we must also consider a procedure to reduce a set of approximate 

features for the model. PCA does not always produce a sparse model even if step (1) of the 

algorithm produces  only a small number of predictors, as some of the omitted variables may have 

a large interaction effects with the selected components. On the other hand, highly correlated 

predictors are selected together, and therefore, contain a large number of redundent variables. One 

solution is to apply Lasso by relying on its sparsity assumption to select predictors. However, 

Lasso can perform poorly by the predicted test errors if the training set overfits due to the effects 

of a large number of “noinse” inputs. Preconditioning Lasso by the PC selected variables provides 
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a procedure for dealing with that problem. In this method, we first compute the PC supervised 

components to obtain �̂�𝑖 for each observation in the training set, selecting the threshold by CV; 

then apply the Lasso with �̂�𝑖 instead of 𝑦𝑖. We use all the features in the Lasso fit, not just the 

components used in the supervised PC threshold step. The effect of Precondition Lasso application 

is first to remove the noise varaibles affecting the outcome, thus preventing the adverse effects of 

the noise on it.  

Example : Plot 19.1 comapares the test errors set for the Lasso, supervised PC, and PC pre-

conditioned Lasso for a gene mesurements data set. The supervised component path is trauncated 

at 250 gene features, while the Lasso self-truncates at 100. In this case, while the the Lasso starts 

to ovefit,  the Preconditioned Lasso test error is as low as that for the PC employing fewer features;, 

hence, performs better than both. 

Plot 19.1-Lasso and PC Test errors 

 

19.7 Machine Learning Inference.  

Machine learning models for prediction cannot be employed for inference estimation due to 

differences in their asymptotic distribution of model section methods. An asymptotic model 

selection method is consistent if it selects the correct model from a list of potential candidates; it 

is conservative if it always selects a model that nests the correct one. BIC is a consistent model-

selection procedure while AIC is conservative based on their minimum values. A consistent method 

has an oracle property if it selects a consistent model with an estimator asymptotic equivalent to 

the one that would have chosen the unknown correct model. As an example, consider   

𝑦 = 𝛼𝑥1𝑖 + 𝛽𝑥2𝑖 + 𝑢𝑖        (19.23) 
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the correct model is either β=0 or β≠0, a consistent method selects the correct model β=0 by first 

using an estimator �̂� for the true model estimator that decides if β=0, and then proceeds to estimate 

the selected model without having to go through the initial selection. Lasso is an example of a 

consistent model selection method that does not have the Oracle property because of its estimation 

bias. Other regularized methods such as adaptive Lasso have that property but that is not helpful 

for working with a finite size sample since Oracle is an asymptotic property. With more 

observations we can detect more variables with values close to zero, but then the estimator �̂� will 

have complex form for parameter estimation, typically with very large MSE, Lasso asymptotic 

convergence is not uniform with respect to parameters. Therefore, we cannot perform inference on 

Lasso and post-Lasso OLS models; we consider more demanding models required for machine 

learning inference in this section.  

19.7.1 Partialing-out estimator. Machine learning econometrics estimate none-

parametrically one or more variables of interest but controlling for other variables as with the 

standard microecomonetric models with p<N requires dealing effectively with the dangers of data 

mining and overfitting. The machine learning inference for parameter estimation takes a semi-

parametric method that estimates the principal parameters of interest that is also a function of other 

“nuisance” variables. If the estimation satisfies an orthogonality moment condition, then the 

approach allows for inference on the parameters of interest. The leading estimator employed is the 

Partial Linear Model (PLM), discussed in chapter 11, using Lasso with the sparsity assumption 

that only a few potential controls are relevant:  

𝑦 = d′𝛼 + 𝑔(𝐗𝐜) + 𝑢        (19.24) 

Where g(.) is a flexible functional form for the selected controls and 𝑥𝑐; α has a causal 

interpretation based on the selection-on-observable-only 𝐸(𝑢|d, X𝑐) = 0. The PLM application 

produces √N consistent and asymptotically normal estimator of the α partial effect. However, the 

PLM consistent estimation leaves g(.) unspecified, and requires the model semi-parametrically to 

be estimated with only a few 𝑥𝑐 controls to overcome the curse of dimensionality. Lasso 

modification for inference instead employs more complexity for g(.) specified as  𝑔(𝑋𝑐) ≅ X′𝛾 +

𝑟 that allows for flexibility of 𝑥𝑐 with polynomials and interactions and r is an approximation error, 

we start with  
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𝑦 = d′𝛼 + X′𝛾 + 𝑟 + 𝑢        (19.25) 

Given a well-specified good set of controls, �̂� can be interpreted causally with the main assumption 

of sparsity, namely that only a limited number of x variables are relevant. 

However, the literature has employed an alternative partialing-out estimator that is equivalent to 

the PLM. 

In this approach, d scalar is the regressor of interest, typically a policy variable. First apply a Lasso 

of d on x to obtain its OLS residual 𝑢𝑑on the selected x, then apply a Lasso of y on x and the OLS 

residual 𝑢𝑦 on the selected variables. At the final stage, we obtain �̂� from an OLS regression of 𝑢𝑦 

on 𝑢𝑑in a procedure equivalent to the PLM estimation. In general, with K main regressors, the 

partialing-out estimator performs K separate Lassos for each 𝑢𝑑 and K least squared regressors for 

the second Lassos to finally obtain �̂�1 , �̂�2 , . . . , �̂�𝑘. This procedure is equivalent to that of PLM 

but while the latter uses residuals from kernel regression, and employs the partialing-out sparsity 

assumption, that the number of p nonzero coefficients s in the true model is small relative to the 

sample size N, this is expressed as   

𝑠/(√𝑁/ ln 𝑝) 

that grows at a rate slower than √N; with an approximation error that satisfies  

√(
1

𝑁
)∑ 𝑟𝑖

2 ≤ 𝑐√(
𝑠

𝑁
)

𝑁

𝑖=1
 

for c>0. It is common to use the plug-in formula for the tuning parameter.  

𝜆 = 𝑐 √𝑁Ф(1 − {
𝛾

2𝑝
} 

with regression individual loadings 𝑘𝑗 = √(1/𝑁)∑ (𝑥𝑖𝑗𝜀�̂�)2𝑁
𝑖=1 and normalized 𝑥𝑗 with mean zero 

and standard deviation of one. The formula is applicable under heteroskedasticity and 

homoskedasticity; c=1.1 and 𝛾 = 0.1/ln {max(𝑝, 𝑁)}, this estimator provides good values for c 

and γ 

19.7.2 Partially Penalized Estimator.  
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There are some circumstances where the parameter of interests may not be part of the shrinkage 

model so there is no need to face the challenging application of the regularizer to the full range of 

the parameter vector. Let us define the regression equation in terms of two sub-vectors of zero and 

non-zero variables as 

𝑦 = 𝑋1𝛽1 + 𝑋2𝛽2 +u         (19.26) 

Where 𝑋1is N × p1 and  𝑋2 is N × p2 matrices with p= p1 + p2, and 𝛽1& 𝛽2 are p1 × 1 and p2× 1 

vectors, and assume only 𝛽2 have zero elements, i.e. only 𝛽2is sparse. Then then Partially Linear 

(Regularized) estimator is 

(�̂�1
′ , �̂�2

′)= 𝑎𝑟𝑔𝛽1,𝛽2
min(𝑦 − 𝑋1𝛽1 − 𝑋2𝛽2) ′(𝑦 − 𝑋1𝛽1 − 𝑋2𝛽2)+ λ p (𝛽2) (19.27) 

Note that the penalty is imposed on 𝛽2only; not on 𝛽1. The equation is whether the asymptotic 

properties 

of �̂�1allow valid inference; it is possible to show that the Bridge estimator can provide valid 

parameter inferences that are not part of the shrinkage process. The idea can also be generalized. 

Consider 

 𝑦 = 𝑋1𝛽1 +u 

𝑋1is N × p1 containing some endogenous variables and we have a large number of p2 potential 

instruments for them. With the 2SLS estimator, we construct the first stage instrumental variables 

by estimating 

𝑋1 = 𝑋2П +v given the set of 𝑍 = 𝑋2П̂. The estimation of П  is separate from 𝛽1; moreover, we 

may be interested in Z as the main target in its own right for providing the best approximation for 

𝑋1, given 𝑋2. It can be shown that PLM provides the best instruments for approximating 𝑋1, given 

𝑋2, and it reduces the number of instruments using the sparsity of the shrinkage estimators to 

resolve the problem of too many instruments. This approach is feasible because it is possible to 

obtain optimal instruments Z based on post-Selection OLS (after applying a shrinkage procedure); 

then the IV type estimators follow standard asymptotic results. Recall that interest in this case is 

on the instrumental vector as the main target of estimation for the best approximation for 𝑋1rather 

than the quality of estimator for П. 
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Application 1: A recent application of the PPE is to the distributed lag model. Consider the 

challenge of estimating such a model as the number of observations increase; the potential numbers 

of L increases, creating identification problems. Suppose we are only interested in inference on 

non-lag parameters 𝛽 and specify the model as 

𝑦𝑖 = 𝑥𝑖
′𝛽 + ∑ 𝑥𝑖−𝑗

′𝐿
𝑗=1 𝛼𝑗 + 𝑢𝑖        (19.28) 

with L < N. Then one can apply PPE to estimate the model by 

(�̂��̂�) = 𝑎𝑟𝑔𝛽,𝛼𝑚𝑖𝑛 ∑ (𝑦𝑖 − 𝑥𝑖
′𝛽 − ∑ 𝑥𝑖−𝑗

′𝐿
𝑗=1 𝛼𝑗)

2𝑁
𝑖=1 + 𝜆𝑝(𝛼)    (19.29) 

where the 𝑝(𝛼) regularizer is applied to 𝛼 = (𝛼1
′ , 𝛼2

′ ,  …, 𝛼𝐿
′ ) only; since β is not a part of the 

shrinkage, under the above Bridge regularizer proposition, 𝛽 ̂has an asymptomatically normal 

distribution allowing fruitful application of PPE in that context of inference on β. The basic idea 

on PPE applicable to other contexts is that we have to control for a large number of variables, 

potentially with P>N, and the parameters of interest do not constitute any components of the 

shrinkage, then valid inference on non-shrinkage coefficients by PPE is possible. 

Application 2: A similar argument supports PPE application to penal data. Consider a fixed effect 

penal data model with dummy variable fixed effect control as 

𝑦𝑖𝑡 = 𝑥𝑖𝑡
′ 𝛽 + 𝛼𝑖 + 𝑢𝑖𝑡         (19.30) 

When N is large, the number of dummy coefficients to estimate is also growing to an unacceptable 

number. However, if 𝛽 is the vector of the coefficient interest, and 𝛼𝑖 fixed effect vector is constant 

for i=1, 2, . . . , N, then PPE can provide a valid inference on 𝛽 using 

�̂�𝐹𝐸 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 = ∑ ∑ (�̇�𝑖𝑡 − �̇�𝑖𝑡
′ 𝛽)2𝑇

𝑡=1
𝑁
𝑖=1       (19.31) 

Where �̇�𝑖𝑡and �̇�𝑖𝑡 are mean-deducted. The dummy variable approach suffers from the curse of 

dimensionality, so the above approach can provide a valid inference in that context.   

19.7.3 Orthogonalization. The PLM partialing-out model of α is a two -step estimator for 

which the second stage asymptotic distribution of α does not change by the first stage estimation 

because the former satisfies the moment orthogonality condition. Consider α as parameter of 

interest and η as the nuisance parameters. The Two-stage Partialing-out estimator first estimates �̂� 

and then �̂� by solving for all variables 𝑤𝑖  
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∑ 𝜓𝑛
𝑖=1 (𝑤𝑖, 𝛼, �̂�) = 0         (19.32) 

The asymptotic distribution of α is independent of the first stage estimation if 𝜓(.) satisfies  

E{𝜕𝜓(𝑤, 𝛼, 𝜂)/𝜕𝜂} = 0        (19.33) 

(See Cameron 2005, 210). Then, if a change in η does not affect in expectation 𝜓(.) which implies 

estimates �̂� leaves the distribution of �̂� unchanged. To show this, consider y= αd + g(X) + u and 

define  𝜂1 = 𝐸 (
𝑑

𝑋
) and 𝜂2 = 𝐸 (

𝑦

𝑋
). The expectations of 𝜂 ̂1and 𝜂 ̂2 are from the OLS regression of 

d and y on the Lasso selected components of x. The Partialing-out �̂� is fron the OLS regression of 

(y - 𝜂 ̂2) on (d - 𝜂 ̂1), corresponding to the population moment condition 

𝐸{𝜓(𝑤, 𝛼, 𝜂1, 𝜂2)} =0         (19.34) 

where 𝜓(𝑤, 𝛼, 𝜂1, 𝜂2) = (𝑑 − 𝜂1){(𝑦 − 𝜂2) + 𝛼(𝑑 − 𝜂1)}; the term in front of the curly brackets 

corresponds to 𝑥𝑖, while that inside the curly brackets is the error term 𝑢𝑖; Therefore, the OLS 

estimator of y on x satisfies 

∑ 𝑥𝑖𝑢𝑖 =𝑖 ∑ 𝑥𝑖(𝑢𝑖 − 𝛽𝑥𝑖)  = 0𝑖         (19.35) 

with corresponding moment condition 𝐸{𝑥(𝑦 − 𝛽𝑥)} = 0 . 

19.7.4 cross-fit partialling-out. Another model for inference is an adaptive procedure for bias 

reduction that employs different samples for predictions of y from components of d, and the 

subsequent sample for α estimation. Combining cross-fit with orthogonalized moment is known 

as the Debiased or Double Machine Learning estimator. We divide the sample into a larger 

subsample of nuisance variables using Lasso components of d on x and y on x, and a small one for 

the variable of interest employing OLS regression of d and y on �̂� = 𝑋′�̂�𝑑 and �̂� = 𝑋′�̂�𝑦.  These 

then use the residuals �̃�𝑑 = 𝑑 − 𝑋′�̂�𝑑 and  

�̃�𝑦 = 𝑦 − 𝑋′�̂�𝑦 finally, the OLS estimate of �̃� derives from �̃�𝑦 and �̃�𝑑. The double learning results 

in less restricted sparsity assumption that the nonzero coefficients grow at a rate no more than N 

rather than √N, that is, s/(N/ln p) small for p potential controls and s subset of them in the correct 

model. This estimator is asymptotically equivalent to the Partialing-out estimator. To make up for 

efficiency loss from using only a part of the original sample, we estimate a K-fold cross fitting 

double learning model hence obtaining from �̃� = 1/𝐾 ∑ �̃�𝑘
𝐾
𝑘=1 . 
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19.7.4-Parialing-out IV estimator.  

The Partialing-out approach to reducing the number of input variables can be exploited to resolve 

the problem of over-identification for the case of many more instruments than endogenous 

regressors by IV estimate linear estimation of a subset of selected controls and instruments. 

The Partialing-out IV estimates a model with d endogenous variables, W exogenous variables to 

be retained as always included and X controls variables; there are also Z instruments with dim [Z 

] ≥ [𝐝]  

𝑦 = 𝐝′𝛼 + 𝐖′𝛿 + 𝐗′𝛾 + 𝑣        (19.36) 

The IV Partialing-out algorithm, simplified with 𝛿=0 is 

i. Obtain the Partialing-out residual �̂�𝑦𝑖 with Lasso selected variables 

ii. Calculate the scalar instrument �̌�𝑑𝑖from a Lasso regression of d on X and Z with selected 

variables �̃�𝑑 and �̃�𝑑 used to predict �̂� ; finally calculate �̌�𝑑𝑖 and the �̌� from the OLS regression 

of d̂ on �̌��̂� (the selected Lasso variables of d̂. 

iii. Calculate the Partial-out endogenous regressor �̂�𝑑𝑖 = 𝑑𝑖 − �̌��̂�𝑖

′  . 

iv. Compute �̂� by IV regression of �̂�𝑦𝑖 on �̂�𝑑𝑖 with �̌�𝑑𝑖 as the instrument.  

19.8-Unsupervised Machine Learing. 

Learning is supervised by an associated respose variable y. By contrast, unspervised learning 

analysis focuses on the features themselves without a response variable, and can provide important 

insights in some contexts. For example, in a sample of cancer patients, we may wish to look for 

subgroups of patients who share similar gene compositions for a better understanding of the 

disease. We cannot rely on the regression MSE or classification error rate to select the best sample 

sungroup divisions but we can still apply measures that can produce groups that achieve relative 

group homogeneity. Two types of unsupervised learning are common: PCA and Clustering. We 

first examine unsupervised PCA.  

19.8.1 Unsupervised PC. Since with unsupervied we cannot check the outcone of the anaysis by 

the model prediction, the PCA identifies a large set of corelated varibles to summarise the data into 

a relatively smaller represenative groups the collectively explain most of the original data 

variations. To do so, PCA employs divisions that lead to the maximum within-group correlation. 
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Consider the original data set X of  n x p , all centered to have mean zero; suppose we first want 

to find the group of varaibles that have the largest corr varaince subject. We obtain the linear 

combination of p features  

𝑍1 = ∅11𝑋1 + ∅21𝑋2+ . . . +∅𝑝1𝑋𝑝       (19.37) 

Then we can find  the first component with the largest within group varaince, subjec 

to∑ ∅𝑗1
2 = 1𝑝

𝑗=1  

by solving for the maximixation of  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑐1,...,𝑐𝑘
{
1

𝑛
∑ (∑ ∅𝑗1𝑥𝑖𝑗)

𝑝
𝑗=1

2
} 𝑠𝑢𝑏. 𝑡𝑜 ∑ ∅𝑗1

2𝑝
𝑗=1 = 1𝑛

𝑖=1     (19.38) 

This is the sample varaince of the n values of 𝑧𝑖1; we call 𝑧11, 𝑧21. . . , 𝑧𝑛1 the scores of the first 

principal component, and the lòoading vector ∅1 defines the direction alone the feature axis for 

which the data variation is the largest. The second principla component 𝑍2has the linear 

combination of features with the largest within group variance among the remaining data that are 

uncorrelated with the first component 𝑍1, ect. This is equivalent to constrianing the direction of ∅2 

loading to be orthogonal to that of ∅2 anf found by a second similar within group variance 

maximization. Then we represent group homogeneity by the vector sore graphicall by 𝑍1 aginst 

𝑍2; 𝑍2 against 𝑍3 , ect. or equivelently by projecting the oroginal data onto the subspace of ∅1, ∅2 

, ∅3, . . ., these are the ordered sequence of eigenvectors of the matrix 𝑋𝑇𝑋, the variance of the 

components are the eigenvalues. 

 Example. USArrests data set have score length of n=50 and p=4. Plot 19. 2 shows the first two 

principal componetnts together with their scores and loadings, the fitrst loading put equal weight 

on Assault, Murder and Rape and much less on Urbanpop while the second loading does the 

opposite, hence the second PC roughly presents the level of urbanization.   
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Plot 19.2 PC with a two components  

Another interpretaion of PC is that they represents the dimensions of the data as close as possible 

to all the data points in terms of average squared Euclidian distances, the first M score vectors and 

loadings lead to the best M dimensional approximation to 𝑥𝑖𝑗 data points . 

𝑥𝑖𝑗 ≈ ∑ (𝑧𝑖𝑚∅𝑗𝑚
𝑀
𝑚=1 ) 

The first principal compenets are then found by minimization of the residual sum of squares out 

of all approximations of 𝑥𝑖𝑗 to obtain, for given scores ∅𝑗𝑚, the solution as  

 

∑∑(𝑥𝑖𝑗 − ∑(𝑧𝑖𝑚∅𝑗𝑚)2

𝑀

𝑚=1

𝑛

𝑖=1

𝑝

𝑗=1

 

The question is how much of the variance in the data is left out by the first few PC? We wish to 

know the proportion of variance explained (PVE)by each PC realtive to the total variance in the 

data set. It turns out that we can decompose the total variance as that of the first M components, 

and the remaining residual and unsupervised PC as an equivalent minimization problem and PVE 

as the R^2 of the approximation.  
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An important application of PCA is for imputation for missing data by a procedure knaown as 

matrix completion. Imputation requires first to check if the missing data is randomly distributed. 

The procedure starts with the full data matrix, then obtains the mean values for nonmissing data, 

imputes these to the missing data and deducts the mean from nonmissing data,  as explained in the 

following 19.2 algorithm: 

19.2 Matrix Completion Algorithm   

 

 

Example using USA arrests data. The matrixx completion is applied to 10% of the matrix elements 

artificially set as missing and then imputed by 19.2 algorithm with only M=1 PC. 

The true 𝑥𝑖𝑗and imputed values �̂�𝑖𝑗 for the standardized X values have an average correlation 

between the two sets of 0.63 with an standard deviation of 0.11, compared to an average correlation 

of 0.79 with an standard deviation of 0.08 if using the complete nonmissing data, hence the method 

proves a good solution for the missing data in this particular example. 

19.9Clustering.  

Clustering are a set of methods by which we establish similar subgroups of data, like PC, they are 

also unsupervised procedure for uncovering distinct clusters on the basis of the data but clustering 

differs in finding homogeneous subgroupds rather than a few subgroups of dimensions. For 
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example, clustering can identify the market segmented subgroups The two main clustering 

methods are K-Means Clustering  and Hierarchical Clustering .  

19.9.1 K-Means  Custering . This method first partitions the data into a pre-specified number of 

clusters while the latter treats that number as an unkown using a tree-like representation called a 

dendrogram that views possible number of homogeneous clusters from 1 to n.   

The idea on which K-Meeans Clustering is based is that within cluster variination should be as 

small as possible to result in good clustering. Consider the ith observation in k clustering 𝑖 ∈ 𝐶𝑘, 

then minimize the amount by which within a given cluster observations differ from each other by  

        (1939) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑐1,...,𝑐𝑘
{∑ 𝑤(𝑐𝑘)

𝐾
𝑘=1          

choice of minimization is by squared Euclidian distance with which we define  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑐1,...,𝑐𝑘
{∑

1

|𝑐𝐾|

𝐾
𝑘=1 ∑ ∑ (𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2}𝑝
𝑗=1𝑖,𝑖′∈𝑐𝑘

    (19.40) 

The solution employs the following K-Means algorithm. 

19.3 K-Means Algorithm 

 

The step 2a computes the cluster centroids as the mean of the observations in each cluster; hence 

the result depends on the initial randomly assigned clusters. To select the best solution the 

algorithm must be repeated with different initial values. Plot 19.3 presents an example of K-Means 

Clustering for a simulated data set with k=3.  
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19.8.2 Hierachical Clustering. 

The disadvantge of K-Means Clustering is its pre-specification of the number of cluster K. 

Hierachical Clustering has no such a requirement and the most common type aranges the data by 

a tree-based, bottom-up or agglomeerative clutstering known as a dendrogram. Plot 19.3 illustrates  

 

Plot 19.3 K-Means Clustering with k=3 

the construction and interpretation of a dendrogram with 9 obsersvations. Each leaf of the 

dendrogram on the left represents one of the observations of the plot on the right, as an unattached 

leaf; the lower in the tree fusions occur, the more similar the groups of observations are to each 

other. On the other hand, the vertical height of the fusions (on the left hand plot) indicates how 

different the two observations are. Therefore, the observations at the very bottom of the tree are 

very similar while those at the top are quite different. In general, there are 2𝑛−1possible reorderings 

of the dendrogram with n observations because at each of the n-1 fusion points, the position of the 

two fused branches could flip without affecting the dendrogram interpretation, Therefore, 

conclusions based on horizonal axsis proximity cannot provide a measure of similarity, similarity 

must be based on the vertical axsis where branches for two observations are first fused (left plot), 

making a dendrogram . In other words, the height of the cut to the dendrogram has the same 

function as k in K-Means  Clustering, making it a Hierachical method of controlling the number 

of clusters obtained.   
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Fig. 19.10 Interpreting a Dendrogram  

The dendrogran is defned by some measure of dissimilarity between each pair of observations; the 

most common Euclidean distance; at the bottom each n observation is treated as its own cluster, 

then the two most similar are fused, so now we have n-1 observations; then two most similar 

clusters are fused, leaving n-2 observations, etc. until the dendrogram is complete when all 

observations belong to a single cluster. The notion of linkage generalizes fussion of clusters 

containing multiple observations, for example {5, 7} wih {8}, is based on four common 

types−Complete, Average, Single and Centroid briefly described in the Algorithm 19.3. 

19.3 Algorithm Hierachical Clustering 
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Note that the nested nature of Hierarchical Clustering can sometimes result in worse outcomes 

than K-Means Clustering. Suppose observations on men and women are evenly divided between 

Americans, Asians and Europeans, then splitting into two groups by gender, and then divisions by 

continent; this procedure does not result in nested clusters.   

19.9.3 Choice of dissimilarity . The observations may be far apart from each other by their 

Euclidean distance and yet highly correlated. Then correlation-based distance might be preferred 

that focuses on observation profiles rather than their magnitudes. For example, a Euclidean 

measure of online shoppers with infrequently purhased items using a {0, 1} binary variable would 

cluster together those with zero non-purchase, treating them as similar. That may not be desirable 

while those who bought items A and B but never item C or D, those with A and B purchased form 

better clusters using correlation-based distance. Therefore, choosing a dissimilarity measure is an 

important part of Hierarchical Clustering.  

Selected Reading  

James et. al. (2021) chapters 2 and 6 discuss linear Machine Learning models with many 

empirical  examples in R; Hastie et.al  (2001) chapters 3 and 4 coverr those models at greater 

depth and details. Cameron and Trivedi (2022), chapter 28 has several M.L. empirical 

examples of the linear models in Stata,  Chapter 1 of the Chan and Ma’ty’as (2022) volume is 

a short and very good introduction to linear M.L. Tibshirani (1996) invented Lasso.  
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Lab Linear Shrinkage Models   

Lab 1. Regress a continuous dependent variable y on three correlated normally distributed 

regressors, denoted x1, x2, and x3. The actual data-generating process (DGP) for y is the “true” 

linear model with an intercept and x1 alone (Many of the methods in this example can be adapted 

for other types of data such as binary outcomes and counts.) 

a) Obtain the descriptives and correlation among the variables and obtain all possible model 

estimations.  

 

 

 

• All possible models. 
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b) Identify the best model by R2, ajR2, MSE, AIC, BIC. 

 

• the best model with intercept and x1 selected by the smallest MSE, BIC, etc. 

 

Lab 2. Choosing a model by CV.  Following from Lab1 data set, Sample split and select the best model 

by CV. 

a) Split the sample observations into 80% training subsample and 20% test sample (out-of-sample) 

and identify the best model with the smallest MSE. 

   

 

 

 

b) Split the sample by K-fold CV with K=5 using crossfold Stata command.  
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With all 8 models: 

 

 

Lab 3. Stepwise selection. Use the previous linear model for stepwise select using Stata vselect command 

based on ajR2, AIC, BIC, or AICC (a bias-corrected version of AIC).  
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Lab 4. Best Subset Selection. Open hitters data on baseball players’ salary, report the descriptives after 

removing the missing values.  

a) Select the best model for a given number of predictors using the selection methods in Lab1-3 

and output the best set of variables for each model size. 
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b) Plot all of the models at once by the selection methods to identify the best overall model,  
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•  The lowest BIC is the six-variable model resulting in the above coefficient estimates. 

  
Lab 5. Ridge and Lasso.  Open data file Hitters  

a) Estimate a Ridge regression at small and large values of λ. 

 

  

 

 

 
 

 

 
b) Split the sample into training and test samples in order to estimate the test error without and 

cross-validation of λ to obtain the lowest predicted error 
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c) Now run a Lasso regression for the same sample.  

 

 

 
 

Lab 6. Lasso-Ridge-elastic comparison.  

 

a) Open data file fakesurvey2-vi.dta, apply elastic net regression with 10-fold CV.  
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b) Compare elastic net, Ridge and Lasso regressions test MSE and report Lasso coefficient 

estimates.   
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Lab 7. M.L. Inference. Partialing-out- see also below, Lab_x 4. 

Open data file mus203empdmdexp.dta, the sample contains log of total health expenditure and other 19 

basic variables-14 binary and 5 continuous variables. 

a) Divide the sample into 80% training sample and a 20% test or hold-out sample, fit a Lasso 

partialing-out regress of ltotexp on suppins, controlling remaining Lasso selected control 

variables using Stata command poregression with a penalty parameter λ selected by a plugin 

formula.  
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b) Repeat the above manually.  

 

 
 

Lab 8. Fit Cross Partialing-out IV & Double selection, see also below, lab_x 5. 

 

Open cross-sectional data file mus228ajr.dta, define globals for the variables and fit a partialing-out 

Lasso_IV model of per capita income loggdp95 to shrink the number of potential instruments and 

exogenous variables using plugin λ.    
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Lab 9. Unsupervised ML & PCA.  Perform PCA on the USArrests data set for the 50 US states. 
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Lab 10. Clustering 

k-means with n=50 and k=3 
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LAB LINEAR SHRINKAGE EXERCISES  

Lab_x 1. choosing Validation set by CV.  

a) Use hitters data set to select models of different sizes by BIC, ajR2, etc. with Validation method. 

 

b) Now select the best model by cross-validation method 

 

Lab_x 2. Comparison of Ridge, Lasso and elastic net.  

a) Use the simulated data of lab 1 for y x1, x2 and x3 to run OLS, Lasso, Lasso adaptive, Lasso 

plugin, and elastic net with alpha =0 and 0.9.   

 

b) Compare post-estimation coefficients. 

 

Lab_x 3. Regression under  p>N to select the best Lasso and adaLasso based on CV and BIC.  

a) Run Stata vl to build the variable list, and split the sample into training and test subsamples 

and fit a linear Lasso. 

 

b) Fit an adaptive Lasso 

 

c) Select smoothing parameter λ by CV. 

 

d) Select the best model by BIC 

 

Lab_x 4. Fit a cross Partialing-out & double selection, see also above, Lab 7.  

a) Use mus203mepsmedexp.dta to fit a cross-partial-out Lasso regression for ltotexp on suppins, 

controlling for all interaction variables generated from the original variables. 

 

b) Fit a double selection Lasso  

 

Lab_x 5. Manual application of Partialing-out Lasso IV, see also Lab 8 above. 

Use Use mus228ajr.dta to fit manually a partialing-out Lasso IV model of lab 8 above. 

 

Lab_x 6. Lasso, elastic-net  

a) Use fakesurvey2_vl.dta to build var. list for Ridge regression. 

 

b) Fit an elastic net model to auto.dta     

 

Lab_x 7. Partialing-out Lasso  

Q-Use breathe.dta to measure the effect of nitrogen dioxide on the reaction time of school 

children by cross-fit partialing-out xporegression.   
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Lab_x 8. Clustering  

Q-Apply clustering to the simulated data (x1.x2) with K = 2, 3 and 4 clusters identified. 

 

Lab_x 9. Hierarchical Clustering 

Q-Use Lab_x 9 data with n=50 to apply a hierarchical clustering  
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CHAPTER 20 Non-linear  Machine Learning and Deep Neural Nets Models   

20- Nonlinear ML Models. Econometrics employs non-linear models to deal with quite 

common types of data nonlinearities; the main types are when the response variable is discrete, or 

it is continuous but limited in scope, e.g. takes only positive values, or it is continuous with a 

nonlinear stepwise function. Machine learning offers techniques for modelling them when we have 

more predictors than the number of observations, similar to nonlinear models in econometrics that 

assume p < N context. One solution is to employ shrinkage with regularization. However, the 

extension of linear ML regression to nonlinear models is challenging. In the linear ML models the 

least squares or likelihood methods are usually employed as the objective function modified with 

different regularizers such as Lasso, Ridge or AdaLasso. A common approach is to employ a 

nonlinear least squares or non-linear log likelihood objective function. That is a challenging task 

since constrained nonlinear optimization has to rely numerical solutions. If the log-likelihood 

objective function is concave or the least squares function is convex, or the class of models based 

on the Generalized Linear Model (GML) are applicable, then efficient algorithms are available for 

some regularizers, such as the convex Bridge and its special cases. The tuning parameter λ is 

critical for nonlinear LM models as for the linear ML applications. In the discrete response 

variable, the minimization of the least squares residual is not necessarily convex; the cross 

validation modified with shrinkage regularization based on likelihood objective. The identification 

of the optimal tuning parameter obtains a sequence of (λ1> λ>2 . . . > λT) each time excluding one-

fold and calculates the average coefficient estimates for each λ folder; it obtains the average ratio 

of the error to standard deviation across included folds, a measure known as the deviance, and 

select the best λt based on the deviance. Moreover, in the linear case, valid inference is achievable 

with PPE for the non-shrinkage parameters, the same approach is possible with nonlinear ML 

models, see Chan et.al. (2014, 2.2.3).  

The focus of nonlinear ML models is on improving upon linear ML predictions by reducing 

further the complexity and thus the variance estimation of the ML linear models by extending them 

by a variety of polynomial regressions; these include spline and generalized additive regressions. 

Polynomial regression adds extra predictors to the original such as cubic regression with X, X2, 

and X3. Step function regression uses K different regions to generate a qualitative predictor to fit a 

piecewise constant regression. These models are special case of a Basis function approach that fits 
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fixed known functions to X; for polynomials by 𝑏𝑗(𝑥𝑖) = 𝑥𝑖
𝑗
 and for step functions by 𝑏𝑗(𝑥𝑖) =

𝐼(𝑐𝑗 ≤ 𝑥𝑖 < 𝑐𝑗+1). Regression Sspline combines these two methods for more flexibility by fitting 

different polynomials to K different regions, while Smoothing Splines employ regression that 

improves complexity my minimizing a residual sum of squares subject to a smoothness penalty. 

Generalized additive models extend the above to multiple predictors.  

20.1 Spline Models 

Fig. 20.1 shows the fits for the subset of a US wage data set with a knot at age=50; cubic 

polynomials unconstrained (top right), constrained to be continuous at age=50 (bottom right), 

constrained to have continuous first and second derivatives (bottom left) and linear spline 

constrained to be continuous (bottom right). In this example we have only one knot, but in general 

there may be more than one. The top left looks unnatural with a jump and the constraints improve 

continuity of the fitted curve; each time imposing a constraint frees up one degree of freedom, so 

a degree-d spline is a piecewise polynomial of degree d. We use the basis model to represent a 

cubic regression spline with K knots by 

𝑦𝑖 = 𝛽0 + 𝛽1𝑏1(𝑥𝑖) + 𝛽2𝑏2(𝑥𝑖)+. . . +𝛽𝐾 + 3𝑏𝐾 + 3(𝑥𝑖) + 𝜀𝑖   

 (20.1) 

 

Plot 20.1 Polynomials for the wage dataWe can fit (20.1) by least squares with an appropriate 

choice of basis functions 𝑏1, 𝑏2. . . . , 𝑏𝐾+3. In order to fit a cubic spline with K knots, we must 
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perform least squares regressions with an intercept plus 3+K predictors, and estimate a total of 

4+K coefficients with d=4+K. However, splines can have high variance because the predictors are 

either too big or too small and we need to impose boundary constraints, suggesting to place more 

knots where the function might change rapidly and fewer where it seems stable, or equivalently 

pre-specify the degrees of freedom for the spline.  

Smoothing spline provides a different approach to smoothness which is, to fit some specified 

function g(x) to the data to make 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑔(𝑥𝑖))
2𝑛

𝑖=1  small. Without any constraints on g(x), 

we can always reduce RSS to zero, but that overfits the model. A natural alternative to overcome 

this problem is by adding a penalty term to RSS that minimizes  

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑔(𝑥𝑖))
2𝑛

𝑖=1 +λ∫𝑔′′(𝑡)2𝑑𝑡       (20.2) 

Where λ is a nonnegative turning parameter similar to those employed by Ridge and Lasso, the 

function g that minimizes (20.2) is known as a smoothing Spline. The first derivative of the penalty 

term 𝑔′(𝑡) measures the slop of a function at t. while its second derivative 𝑔′′(𝑡) in (20.2) measures 

its roughness. A large value produces a very curvy plot near t, close to zero otherwise; ∫𝑔′′(𝑡)2dt 

is a measure of total change in the function 𝑔′(𝑡). Therefore, the larger λ, the smoother g will be; 

the penalty term has no effect on (20.1.2) at λ=0 so the function will be jumpy but as λ→ ∞, g will 

be perfectly smooth; λ controls for the spline smoothness, and as λ increases from 0 to ∞ with n 

the nominal degrees of freedom, but with the spline parameters heavily constrained, the effective 

degrees of freedom 𝑑𝑓𝜆 goes from n to 2.  We can choose an efficient value of λ by cross-validating 

RSS with the Leave-One-Out CV error (LOOCV), see chapter 12 for details.     

20.2_Generalized Additive Models 

An advanced automated non-linear method with greater flexibility is the Generalized 

Additive Models (GAM). The GAM with unspecified smooth, non-parametric functions 𝑓𝑗 (. )’s, 

haves a regression equation s aof the form  

𝐸(𝑌|𝑋1, 𝑋2, …𝑋𝑝) =  𝛼 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯+ 𝑓𝑝(𝑋𝑝)   (20.3) 

We fit each function using a scatterplot smoother such as a kernel smoother with an algorithm for 

simultaneously estimating all p functions. In a classification context, the mean of the binary 
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response in a two-class classification, 𝜇(𝑋) = 𝑃𝑟(𝑌 = 1|𝑋)is related by a linear regression to the 

logit function:  

log (
𝜇(𝑋)

1−𝜇(𝑋)
) = 𝛼 + 𝛽1𝑋1 + ⋯+ 𝛽𝑝𝑋𝑝      (20.4) 

This is modified for the additive logistic with a more general unspecified functional form f(.) for 

each linear term:  

log (
𝜇(𝑋)

1−𝜇(𝑋)
) = 𝛼 + 𝑓1(𝑋1) + ⋯+ 𝑓𝑝(𝑋𝑝)      (20.5) 

The additive logistic regression is an example of the GAM, relating the conditional mean 

response to an additive function via a link function g: 

𝑔[𝜇(𝑋)] = 𝛼 + 𝑓1(𝑋1) + ⋯+ 𝑓𝑝(𝑋𝑝)      (20.6) 

An example of the classical link functions is the Gaussian response model. The identity link, 

𝑔(𝜇) = 𝜇 is used with a linear additive Gaussian response,  𝑔(𝜇) = 𝑙𝑜𝑔𝑖𝑡(𝜇)  or  𝑔(𝜇) =

𝑝𝑟𝑜𝑏𝑖𝑡(𝜇)  for binominal probabilities modeling with the latter as the inverse Gaussian cumulative 

function , 𝑝𝑟𝑜𝑏𝑖𝑡(𝜇) = Φ−1(𝜇)  and additive log-linear models  𝑔(𝜇) = log(𝜇) for Poisson count 

data. Together with the gamma and negative-binominal distributions, they are all members of the 

exponential group of functions. However, not all functions are required to be exponential; the 

GAM can also handle a mixture of the following input terms functional forms: a semi-parametric 

model 𝑔(𝜇) =  𝑋𝑇𝛽 + 𝛼𝑘 + 𝑓(𝑍) with linear predictors for X, 𝛼𝑘 for the kth qualitative input 

vector and the effect of Z input is modeled non-parametrically. 𝑔(𝑉, 𝑍) =  𝑔𝑘(𝑍) allowing 

interactive terms between Z and qualitative input vector, 𝑔(𝜇) =  𝑓(𝑋) + 𝑔𝑘(𝑍)  and 𝑔(𝜇) =

 𝑓(𝑋) + 𝑔(𝑍,𝑊) where the non-parametric function has two predictors, Z and W. In time series, 

the additive models can decompose the series trend and seasonal components.  

Fitting Additive Models- The building blocks of the GAM is the scatter plot smoother. Here we 

employ the cubic smoothing spline which has the form  

𝑌 = 𝛼 + ∑ 𝑓𝑗  (𝑋𝑗 ) +  𝜀𝑝
𝑗=1         (20.7) 
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We can specify penalty sum of squares terms with tuning parameters 𝜆𝑗 ≥ 0, and apply the 

following backfitting algorithm with k iterations for additive models until 𝑓𝑗 change less than a 

specified threshold.  

1. Initialize: �̂� =  
1

𝑁
∑ 𝑦𝑖 ,

𝑁
1 𝑓�̂�  ≡ 0, ⊬ 𝑖,    

2. Cycle: 𝑗 = 1,2, … , 𝑝, … . ,1,2, … . , 𝑝, …, 

𝑓�̂�  ←  𝑠𝑗[{𝑦𝑖 − �̂� − ∑𝑓�̂�
𝑘≠𝑗

(𝑥𝑖𝑘)}
𝑁
1
] 

 

𝑓�̂�  ←  𝑓𝑗 − 
1

𝑁
∑𝑓�̂�
𝑖=1

(𝑥𝑖𝑗) 

However, this does not produce a unique solution because the constant term α is unidentified 

(redefined by adding or subtracting constants). To overcome this problem, we make the standard 

assumption that the functions average to zero over the data. Then �̂� = 𝑎𝑣𝑒(𝑦𝑗) and provided the 

input matrix X entries has full column rank so it is a strictly convex function; minimization will 

then be unique. An iterative procedure can then solve for a minimization solution by the algorithm 

outlined above and known as backfitting. An example is the widely used logistic binary model; its 

generalized, additive logistic, has the form 

log
𝑃𝑟(𝑌=1|𝑋)

𝑃𝑟(𝑌=0|𝑋)
=  𝛼 + 𝑓1(𝑋1)+. . . + 𝑓𝑝(𝑋𝑝) 

This function is the most frequently employed model, especially in medical research, for example, 

in risk screening. This model can be estimated with the backfitting algorithm using the Newton 

iterative procedure. Another example is provided by Email Spam data from ftp.ici.uci, with a 

response coded 0 for email and coded 1 for spam, and 57 quantitative predictors, 48 predictors are 

defined as the percentage of words in the email matching a given word such as business, address, 

free, etc., and 6 as standing for the percentage of characters that match a given type, e.g. ch!. The 

remaining three predictors are based on sequences of uninterrupted capital letters: the average 

length, longest length, and the sum of the length. Using a randomly selected test set size of 1536, 

30065 for the training observations, and employing a smoothing-spline tuning parameter (with the 

trace of its matrix 4=4) produced the outcome presented in table 20.1. 

 

ftp://ftp.ici.uci/
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Table 20.1 GLM for heart data 

 

The detained estimates (not shown here) suggest many non-linear effects account for strong 

discontinuity at zero. Hence, replacing the predictors with an indicator for a zero count and 

applying a linear logistic model gives a test error of 7.4%, but including the linear frequencies 

reduces the error to 6.6%. Therefore, the nonlinear additive model has an additional predictive 

power.   

20.3_Tree-based Methods 

Tree-based methods segment the predictor space into a number of regions, and typically use the 

mean response training observation values in each region to which it belongs. Since the rules used 

for the predictor data segmentation are summed up in a tree, they are called decision tree methods 

and applicable to both regression and classification problems. Tree based methods, introduced by 

Breiman at. el. (1984), have hierarchical structure using a series of sequential division of the inputs 

x to reach a conclusion about y output, typically a prediction of y. They consist of two types of 

Classification and Regression Trees (CART); both have many similarities except for the output y 

being categorical for classification and numerical for regression, or qualitative v. quantitative. 

Trees are easy to visualize and understand without statistical interpretation and need little 

preprocessing to generate them.  

20.3.1 Single Tree Regression.  

Building a tree consists of a set of recursive, non-overlapping partitioning of the input data into j 

regions R1, R2, . . . , Rj to obtain a prediction for y corresponding to all observations in each j region. 

The partitioning method is known as Recursive Binary Splitting that selects Xj with a threshold 

value s to divide the input space into regions such that {X| Xj < s} and {X| Xj ≥ s} produce the 

largest fall in the prediction error, defined by the residual sum of squares (RSS) for numerical 

response, and the classification error rate (CER)- fraction of observations that do not belong to the 

most common class or category. Classification trees use two other error measures, the Gini index 

and Cross Entropy discussed below.  
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For a large set of variables, the processing tree-based approach leads to an overfitted 

model and the jump across different binary splitting points produces variances that differ in 

different regions, i.e. potentially heteroscedastic errors. A large tree may overfit and a small tree 

may miss important features of the data and lead to an inaccurate fit. Therefore, the size of the 

tree |T|, the number of regions that are not split any further (“leaves” of the tree), should be taken 

into account to limit overfitting. A measure of both tree size and accuracy is defined as  

RSS+α|T| 

Where α is a tunning parameter that penalizes the numerical regression model for additional splits; 

replaced with the Gini index for classification regression. The top of a tree for the first split is 

called the root node; a branch is a region resulting from a partitioning the input variable, and a 

node without any branch is the terminal node or a leaf.  The process of adding more branches is 

known as growing the tree, while that of cutting the number of brunches as pruning the tree.  

Let us use ˄ for the and operator, an indicator function I(.)=1 if its argument is true, zero 

otherwise, and define a response variable that depends on two covariates x1 and x2 as 

𝑦𝑖 = 𝛽1𝐼(𝑥1𝑖 < 𝑐1 ˄ 𝑥2𝑖 < 𝑐2) + 𝛽2𝐼(𝑥1𝑖 < 𝑐1 ˄𝑥2𝑖 ≥ 𝑐2) + 

𝛽3𝐼(𝑥1𝑖 ≥ 𝑐1 ˄𝑥2𝑖 < 𝑐2) + 𝛽4𝐼(𝑥1𝑖 < 𝑐1 ˄𝑥2𝑖 ≥ 𝑐2) + 𝑢𝑖 

Fig. 2.1 shows the regression tree that partitions (x1, x2) into four regions. Within each region the 

response variable is the same for all values of x1 & x2 that belong to that region.  

 

Fig. 2.1 Regression Tree Partition 

For instance, with c1=2 and c2=3, the four branches are 

{(x1, x2): x1   < 3 ˄ x2 < 2} 
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{(x1, x2): x1   < 3 ˄ x2 ≥ 2} 

{(x1, x2): x1 ≥   3 ˄ x2 < 2} 

{(x1, x2): x1    ≥ 3 ˄ x2 ≥  2} 

The predicted response in regions in this example, given the corresponding β, is shown Fig. 20.2 

tree. 

 

Fig. 20.2 Regression Tree View 

We can also evaluate a binary classification tree by a Confusion matrix that compares each 

predicted value with its corresponding actual value, classifying all observations into four 

categories: the first two as True Positives (TP) and True Negatives (TN) if predictions are in line 

with the actual values; the remaining two as False Positives (FP) and False Negatives (FN) when 

the predictions contradict the actual values. Table 20.3.  

 

Table 20.3 Confusion Matrix 

The Confusion Matrix allows comparison of different versions of the same model and comparison 

of different models such as logit and classification tree models.  

At a given internal node (branch), the label splits the node into a left and right branch 

according to 𝑋𝑗 < 𝑡𝑘& 𝑋𝑗 ≥ 𝑡𝑘, and the tree is represented as down side up; each leaf is the mean 

response value of the observations that fall in that region. A regression tree divides the p predictor 

space 𝑋1, 𝑋2, … , 𝑋𝑝 into𝑅1, 𝑅2, … , 𝑅𝑗  non-overlapping regions, for instance for J=3 and 𝑅3= 

{𝑋|𝑌𝑒𝑎𝑟𝑠 ≥ 4.5 , 𝐻𝑖𝑡𝑠 ≥ 117.5} corresponds to �̅�𝑗 for J=3 (three terminal node or leaves, with 
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two internal nodes or branches). The decision tree starts at the top and recursively splits each 

internal node by a binary variable with the goal to minimize RSS: 

∑ ∑ (𝑦𝑖 − 𝑦𝑅�̂�)
2

𝑖∈𝑅𝑗

𝐽
𝑗=1         (20.8) 

In doing this, the decision tree method minimizes the RSS at the level of the current split rather 

than looking at future splitting until RSS is minimized. This approach, called greedy decision tree, 

simplifies the impractical process of considering all possible trees and still produces a very large 

tree. Nonetheless, the greedy method can produce a complex tree, resulting in regression overfit 

and high variance, and an output that is difficult to interpret. On the other hand, building a small 

tree risks missing important non-linear features of the data. The approach taken in ML regression 

is to build a large tree first and then prune it back into a smaller subtree, the selection process 

known as cost complexity pruning or weakest link pruning that considers a sequence of trees based 

on a tuning parameter α each value of which corresponds to a subtree T⸦𝑇0. 

For a better understanding of regression tree-based methods, consider a tree with m binary split 

regions and j splits to predict a quantitative response Y for a region-specific constant 𝑐𝑚 and 

modeled as  

 

Plot. 20.2 Full Tree for hitters data 

𝑓(𝑥) = ∑ 𝑐𝑚Ι (𝑥 ∈ 𝑅𝑚) 𝑀
𝑚=1       (20.9) 

Then the best �̂�𝑚 is just the average over m regions 

�̂�𝑚 = 𝑎𝑣𝑒(𝑦𝑖|𝑥𝑖 ∈  𝑅𝑚)       (20.10) 
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Since finding the best binary partitioning in terms of min. sum of squares is computationally 

infeasible, we first proceed with a greedy tree. How large should we build the tree before pruning? 

Given m regions and T, let 

𝑁𝑚 = ≠ {𝑥𝑖 ∈  𝑅𝑚},        (20.11) 

�̂�𝑚 =
1

𝑁𝑚
 ∑ 𝑦𝑖,𝑥𝑖∈𝑅𝑚

        (20.12) 

𝑄𝑚(𝑇) =
1

𝑁𝑚
 ∑ (𝑦𝑖 − 𝑐�̂�)2

𝑥𝑖∈𝑅𝑚
      (20.13) 

We then define cost complexity pruning criterion by  

𝐶𝛼(𝑇) = ∑ 𝑁𝑚𝑄𝑚
|𝑇|
𝑚=1 (𝑇) + 𝛼|𝑇|       (20.14) 

Where T is the number of terminal nodes. At α=0 we produce the full tree 𝑇0 equal to the training 

sample error, but as α increases, branches get pruned from that tree in a nested manner with the 

value of α selected using CV.  The approach to finding the best tree is to use the tuning α≥0 for 

each subtree 𝑇𝛼to minimize  𝐶𝛼(𝑇) with α=0 leading to the full tree 𝑇0. 

20.3.2-Classification Single Tree.  

A decision tree for classification follows a similar method for qualitative response, predicting each 

training data observation belongs to the most commonly occurring class in the region to which it 

belongs. In this case, we are not only interested in prediction in a region but also the class 

proportions of the training data that fall in that region. We use a recursive binary splitting method 

to grow a classification tree but cannot use RSS as splitting criterion, instead we use the 

classification error rate: allocate an observation in a region to the most commonly occurring class 

of training data (true {0, 1} observations) in that region, then the fraction of the training 

observations in that region that do not belong to the most common class is the classification error 

rate.  

Let the proportion of observations in node m with for region 𝑅𝑚;  𝑁𝑚 number of observations be 

�̂�𝑚𝑘 =
1

𝑁𝑚
 ∑ 𝐼(𝑦𝑖, = 𝑘)𝑥𝑖∈𝑅𝑚

      (20.15) 

Then the classification error rate is defined by  
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𝐸 = 1 − max
𝑘

 (�̂�𝑚𝑘)       (20.16) 

A measure of node impurity is a discrete misspecification error defined by  

Misclassification error: 
1

𝑁𝑚
 ∑ 𝐼(𝑦𝑖, ≠ 𝑘(𝑚)) =𝑥𝑖∈𝑅𝑚

1 − �̂�𝑚𝑘(𝑚)   (20.17) 

In practice, the classification error is not sufficiently sensitive to tree growing because of its 

discrete nature, and we rely on two other alternative continuous measures of node impurity. The 

Gini index is defined by 

𝐺 = ∑ �̂�𝑚𝑘 (1 − �̂�𝑚𝑘) 
𝐾
𝑘=1      (20.18) 

It is a measure of total variance across K classes; the index has a small value for all class 

proportions are near 0 or 1, hence the Gini is regarded as a measure of node purity: a small value 

indicates a node mainly holds observations from a single class. The other index, known as entropy, 

also called cross-entropy or deviance, is defined as 

𝐷 = −∑  �̂�𝑚𝑘𝑙𝑜𝑔 �̂�𝑚𝑘
𝐾
𝑘=1       (20.19) 

As 0 ≤ �̂�𝑚𝑘 ≤ 1 it follows that 0 ≤ �̂�𝑚𝑘𝑙𝑜𝑔�̂�𝑚𝑘. If the proportions are all close to 0 or 1, then 

entropy and Gini have small values if the mth node is pure; they both produce similar values.  

Fig. 20.3 shows a two-class plot with K=2 and the p as the proportion in the second class, cross-

entropy scaled to pass through (0.5, 0.5). In this K=2 case, we have    

1 − max(𝑝, 1 − 𝑝) , 2𝑝(1 − 𝑝) 𝑎𝑛𝑑 − 𝑝𝑙𝑜𝑔𝑝 − (1 − 𝑝)log (1 − 𝑝) 

All three are similar but Gini and entropy are more suitable to optimization because of their 

differentiability.  

 

Fig. 20.3 Classification Error Rate 
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Example using the South African Heart attach data. The response here is coded as Yes indicates 

the presence of heart disease, No means no heart disease, 13 predictors include Age, Sex and Chol. 

level, and selection by CV leads to a tree with six terminal nodes. In this example we have both 

quantitative and qualitative, for instance ChestPain, predictors. Fig. 20.4 shows the full tree at the 

top, and pruned tree at the bottom right, and the CV, training and test errors for different sizes of 

the pruned trees. Note that for RestECG split (full tree bottom right), regardless of its value, the 

same response Yes is predicted and yet a split is undertaken because doing so leads to higher node 

purity (values close to either 0 or to 1). Although that does not reduce the classification error, it 

promotes node purity by the Gini and entropy indices that are sensitive to node purity. 

 

Plot 20.4 Greedy and Pruned Trees, heart data set 

20.2.3 Missing Data.  

Missing data is a common problem with input data sets, and the solution depends on whether the 

missing variables have distorted the non-missing or are independent of the non-missing 

observations and randomly distributed, so the omission mechanism is independent of the 

unobserved value. More precisely, assume a y response vector and inputs N x p matrix of X with 

𝑋𝑜𝑏𝑠 entry in X but also some missing values; let Z=(y, X), 𝑍𝑜𝑏𝑠 =(y, 𝑋𝑜𝑏𝑠) and R indicator matrix 

with ijth entry 1 if 𝑥𝑖𝑗 is missing, 0 otherwise. Then we say the data is Missing At Random (MAR) 

if R depends on the data Z only through 𝑍𝑜𝑏𝑠: 
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Pr(R|Z, θ)= Pr(R|𝑍𝑜𝑏𝑠, θ)      (20.20) 

Where θ is any parameter in the distribution of R. A stronger assumption more commonly 

employed for missing data is Missing Completely At Random (MCAR), 

Pr(R|Z, θ)= Pr(R|θ)        (20.21) 

Most imputations relay on MCAR. A procedure to identify the nature of the missing data is to code  

“missing”  as an additional and then check to see if “missing” can predict the response. Given 

MCAR, there are some solutions. The tree-based models that contain many simple trees as their 

“building block”, obtained by bootstrapping or another procedure, are known as ensemble tree 

methods. Ensemble tree approaches attempt to address the high variance of tree-based models. We 

discuss three such approaches, each offering a different solution for lowering tree-based variance. 

First, if the relative amount of missing data is small, disregard the missing data. Second, use ML 

methods like CART through surrogate splits. The Surrogate Variables method uses only the 

observations on non-missing predictors; chooses the best primary predictors and split points, and 

then forms a list of surrogate predictors and splits as follows. The first surrogate predictor and its 

split point is that which best mimics the splits obtained on the training data by the primary split, 

the second surrogate is the second-best mimic in that regard, etc. So, if the primary split is missing 

as we send observations down the tree, we use the surrogate splits in order. The method of surrogate 

splits makes use of the correlations between predictors to correct for missing variables; the higher 

the correlation between missing predictor and other predictors, the smaller is the loss of 

information due to the missing value. Third, impute all missing values before training, as, for most 

learning methods, imputation is necessary, usually with the mean or median of the non-missing 

input data.  

20.3.4-Comparison of the least squares and tree-based predictive models 

Since the least squares regression already produces predictions, the value of employing a ML 

predictive method consists of the ability to deal with a very large number of predictors, hard to 

deal with using a linear regression. Mullianathan and Spiess (2016) consider a random sample of 

10,000 owner-occupied units from the 2011 American Housing Surveys with values of each unit 

and 150 predictors such as size and location, number of rooms, etc.; using 41,808 units from the 
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same sample as the hold-out subset. They report tree-based methods, esp. random forests, perform 

much better in prediction than the least squares.    

The least squares application must make some choices whether to include all regressors, esp. 

dummies for location, green space, etc. which alone generates many more variables; we could also 

include interactions among the regressors since the number of rooms or their sizes depend on the 

unit’s land area, etc. That word be infeasible if it leads to the number of regressors greater than the 

number of observations, at least very inefficient predictive values even if the sample size is less 

than the number of regressors. By contrast, ML searches for the interactions. A typical linear 

regression tree maps each vector of characteristics to a predicted value; the prediction function is 

in a tree form that divides into two parts at each node of the tree, for instance, two or less bathrooms 

(left) and more than two bathrooms (right), and continues down the list of regressors until reaching 

a terminal node, or a leaf, as a prediction. Fig.1 provides an example where each leaf corresponds 

to a product of several dummy variables (𝑥1 = 1𝑇𝑌𝑃𝐸=2,3.7 ˟ 1𝐵𝐴𝑇𝐻<1.5 ˟ 1𝑅𝑂𝑂𝑀𝑆<4.5  for the left 

most leaf) with the corresponding coefficient of 𝛼1= 9.2.  

    

 

Plot 20.5 Depth of a Tree 

The fit of a tree can improve by making it deep27, increasingly adding more branches to it until 

each observation would represent its own leaf and the fit would become perfect! This in fact would 

 
27 The depth of a tree is equal to its height- the length of its longest path from the root node to the terminal node, that 

is the number of nodes contain in its height- three in this example. A shallow tree has a lower depth, that is, using 

fewer variables because it uses fewer splits; a shallow tree may underfit the data, capturing too few of the data’s critical 

features. A deep tree may overfit the data, picking on noise in the training data, not critical to its important features. 

Therefore, the depth of a tree in nonlinear ML corresponds to regularization to control for the number variables in 

linear ML such as Lasso.  
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be an overfit; overfitting is not just a feature of tree regression but affects all ML models. That 

flexibility to fit a variety of data structure implies that the best in-sample fit is a poor choice, the 

ML must rely on out-of-sample prediction. The overfitting problem is in part resolved by 

regularization: controlling the depth of the tree is an example of regularization. The smaller the 

tree, the worse will be the in-sample it, but that also means less overfitting, so ML imposes depth 

on the tree, and would choose the best among those of a certain depth. The other ML procedure is 

in using empirical tuning by fitting one part of the sample, and examine what level of depth 

produce the best out-of-sample result with the other part of the sample (CV). We can further 

improve efficiency by random folding of the sample and successively hold out one of the folds for 

out-of-sample evaluation using leaving-one-out CR. Then pick the parameter with the best 

estimated average performance. This procedure works well because it offers both the predicted 

and actual values of the response variable to assess the quality of prediction. While observability 

of the response values still leaves a large number of functions, regularization reduces this problem 

to a much lower dimension. By contrast, inference on parameter estimation typically relies on an 

assumption about the DGP, often normality, to produce consistent coefficient estimates.   

20.3.5-Bagging model.  

The main problem with tree models is that they are unstable; a small change in the training sample 

can lead to a drastic change in the tree structure, that in turn implies response prediction with a 

large variance and high degree of inaccuracy. The models discussed below offer solutions that can 

overcome the high variance of tree-based models.    

The decision tree model has high variance because splitting the training data into two parts 

randomly results in very different outcomes. One solution is to split the tree nodes that produce 

similar outcomes and hence ensure low variance. We know linear models have low variance, so 

we can apply linear regression repeatedly to distinct data for a relatively large data set N compared 

to the number of predictors p, and then average the outcomes. Given n independent observations 

for Z with variance 𝜎2, obtain the mean of �̅� =
𝜎

𝑛
; that is averaging from distinct data repeatedly 

using bootstarp samples lowers high variance. This is the solution proposed by bootstrap 

aggregation or, the Bagging Method. We build a separate prediction model using each training set 
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and average the predictions, that is, compute 𝑓1, 𝑓2, … , 𝑓𝐵   using B separate training set, then 

average them to obtain a low variance learning model.  

𝑓𝑎𝑣𝑔(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)𝐵

𝑏=1        (20.22) 

Since we do not have multiple training sets, we can train with B bootstrap 

𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑ 𝑓∗𝑏(𝑥)𝐵

𝑏=1        (20.23) 

Bagging hugely improves variance reduction (accuracy) because it combines many thousands of 

trees into a single process. The bagging model can extend to the classification by majority vote 

method. This method records the class predicted by each of the B trees and take a majority vote. 

The overall prediction is the most commonly occurring class among the B predictions. On average, 

each bagged tree around uses 2/3 of the observations for the training error calculation, and the 

remaining 1/3 left out, are called Out-Of-Bag (OOB) set, B/3 trees used for testing; applying 

majority vote if bagging is for classification data. We note that with bagging, the simple tree 

structure of the model is lost; for interpretation this is a drawback; it is no longer clear which 

predictors are important if we employ a large number of trees, therefore bagging improves 

predictive accuracy at the expense of interpretability. More stable methods like nearest 

neighborhood are not influenced by this kind of drawback, however, bagging is most helpful with 

the unstable (high variance) tree-based models but then we lose the ability to interpret the 

estimation.  Since each bagged tree is identically distributed, the expectation of an average of B 

such trees is the same as that of any of them. That is, the bias of bagged trees is the same as that 

of each bootstrap tree, so improvement comes through variance reduction for an unbiased estimate.  

The relationship between bootstrap and Bayes methods establishes that the bootstrap mean 

is approximately the Bayesian posterior function, Bagging exploits this relationship to improve 

accuracy. Bagged estimate is an approximate posterior Bayesian mean, since the posterior mean 

minimizes squared error loss, this implies that bagging can reduce mean squared error. 

20.3.6-Random Forests 

The bagging process employs all p features without selecting any, as a result, the trees are highly 

correlated, reducing the scope for variance reduction. Random Forest (RF) is an alternative model 

of variance reduction based on the idea of decorrelating the bootstrap bagged trees by removing 
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the bagging correlations through de-coupling them by randomly selecting m< p features, thereby 

reducing tree correlation and hence, estimated reduced variance. Each time we consider a split, a 

random sample of m predictors is selected from the full set of p predictors, the split is allowed to 

use only of the m predictors. A fresh sample m is used at each split, typically for m ≈ √p, for 

example for the Heart data above, 4 out of 13, so unlike bagging, RF does not even consider a 

majority vote procedure. To understand the rationale behind this approach, consider one very 

strong and a number of moderate predictors in the data set. Then the bagging collection will use 

the strong predictor at the top of each tree, making the trees similar to each other and highly 

correlated. By contrast, on average, (p –m)/p of the RF splits will not consider this strong predictor, 

so others in the set have a better set of being selected, resulting in less variable trees and hence, 

lower variance. Building an RF model with m=p simply reproduces a bagged model.   

An average of B i.i.d. random variables, each with variance σ2, has variance (1/B) σ2. If the variable 

are only i.d. but not independent, with positive pairwise correlation ρ, the average variance is  

𝑝𝜎2 +
1−𝑝

𝐵
𝜎2         (20.24) 

As B increases, the second term becomes negligible, but not the first, thereby limiting the benefits 

of averaging. The RF procedure reduces the correlation between trees through random selection 

of the input variables. Specifically, before each split, we select m≤p of the input variables at random 

used for splitting, usually for  for m ≈ √p, or even as small as 1. The RF regression prediction after 

B such trees {𝑇(𝑥; 𝜃𝑏)}
𝐵
1

 are grown, is  

𝑓𝑟
𝐵(𝑥) =

1

𝐵
∑ 𝑇(𝑥; 𝜃𝑏)

𝐵
𝑏=1         (20.25) 

For regression, the predictors are averaged as above. For classification, RF employs a class vote 

from each tree, and then classifies based on majority vote, as in bagging. In addition, the 

application is recommended to use the following: m=└√p ┘and minimum node size of one for 

classification, and m=  

└ p/3┘ and minimum node size of five for regression. For each observation (𝑥𝑗 , 𝑦𝑗), construct its 

RF predictor by averaging only those bootstrap trees for which that observation was not 

included. Note that when the input numbers are large with a small fraction of relevant variables, 
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random forests will probably have poor results for small m because then at each split, the 

probability of selecting the relevant variables can be small.  

Example For the Heart data set, Plot 20.6 compares the results for the test error rate by bagging 

and by RF as a function of the number of trees built with B bootstrap training data. The bagging 

test error is slightly smaller than that from a single tree and larger B does not lead to overfitting. 

However, RS test error (brown and blue curves) are clearly less than the ones for bagging, so the 

procedure here is almost identical to One-Leave-Out CV.  

 

Plot 20.6 Bagging and RF test error rate 

20.3.7 Boosting   

Boosting is a non-bootstrap method that grow trees sequentially, each tree uses information from 

the previous tree to fit a tree on the modified version of the earlier step in the sequence, hence trees 

are grown not through random bootstrap but rather through adjustment to the current regression 

using the sequence of residuals by combining a number of trees, as in bagging. Boosting combines 

the outputs of many “weak” classifiers into a very effective “committee”, its most popular two-

class algorithm known as AdaBoost.M1. In contract to building a very large tree which amounts 

to fitting the data hard with risk of overfitting, boosting learns slowly by fitting a tree with the 

residuals rather than the response Y, then adds this residual-based decision tree into the fitted 

function to update the next residual. Each tree is usually small with a few terminal nodes 

determined by the number of splits parameter d that slows the learning process, combined with a 

shrinkage parameter λ to even further slowing learning, but unique to this model, learning heavily 

depends on previous trees. Boosting has three tuning parameters: i) the number of trees B selected 

by CV, ii) the shrinkage parameter, typically with λ=0.01 or 0.001, iii) the complexity control 
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parameter d for the number of splits in each tree, often d=1 is effective resulting in a stump, a tree 

with a single split.  

For a two-class AdaBoost.M1problem, consider the output coded as Y€ (-1, 1) and a classifier 

G(x) for a vector of predictors X taking two values [-1, 1]. Boosting works through fitting a tree 

to the error of the training sample, and then using that to update the subsequent training error: 

𝑒𝑟𝑟̅̅̅̅̅ =
1

𝑁
∑ 𝐼(𝑦𝑖 ≠ 𝐺(𝑥𝑏))

𝑁
𝑖=1        (20.26) 

With the expected error rate in the future as 𝐸𝑋𝑌𝐼(𝑌 ≠ 𝐺(𝑋)). Boosting uses a weak classifier, one 

only marginally better random guessing, repeatedly applied to modified versions of the data to 

obtain a sequence of weak classifiers 𝐺𝑚(x), with m=1, 2, . . . , M. The predictions from all of them 

are then combined through a weighted majority vote to obtain the final prediction by  

𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑎𝑚𝐺𝑚(𝑥))𝑀
𝑚=1       (20.27) 

The Boosting algorithm computes 𝛼1, 𝛼2, … , 𝛼𝑀 and weigh the contribution of each 𝐺𝑚(x) as 

demonstrated in  

 

Fig. 20.4 Boosting Classifier 

At each boosting step, weights 𝑤1, 𝑤2, … , 𝑤𝑁 are applied to each training observation (𝑥𝑖 , 𝑦𝑖), all 

the weights at the first step 𝑤𝑖 = 1/N to train the classifier on the data, in each subsequent iteration 

m=1, 2, . . . , M, the weights are individually modified and the classification algorithm reapplied 

to the weighted observations. At each step m, a misclassified observation by the classifier from the 

previous step, that is, 𝐺𝑚−1(x) have their weights increased, while correctly classified observations 

have their weights decreased, thereby forcing boosting iteration to focus on the observations 
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missed in earlier steps. Therefore, unlike Bagging and Random Forests, the boosting algorithm 

improves prediction by concentrating on the residuals, inducing them to move in the direction that 

reduces classification error rate as illustrated in the following algorithm 

AdaBoost.M1 Algorithm 

 

Here the individual weights are updated at the second step, and misclassified observations have 

their weights scaled by a factor of exp(𝛼𝑚) to increase their importance in the sequence for 

𝐺𝑚+1(x). Boosting often improves the impact of a weak classifier very considerably as shown in 

Plot 20.7 for a simulated example test error rate with independent Gaussian features and the 

deterministic target Y using the median of a chi-squared random variable with ten degrees of 

freedom 𝑥10
2 (0.5) = 9.35 (sum of ten standard Gaussian squares) with stumps weak classifier 

defined as  

𝑌 = { 
1

−1
 
𝑖𝑓 ∑ 𝑋𝑗

2  >  𝑋10
2 (0.5)10

𝑗=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Applying this classifier on its own results in only a slight improvement of the test error of 45.5% 

compared to 50% by random guessing. However, as shown in Fig. 19.9.4, after 400 iterations, the 

boosting error rate slowly but sharply declines to reach a minimum of 5.8% despite having a weak 

classifier, with most of the dramatic impact coming from the base learner” G(x).  
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Plot 20.7 node classification tree and bootstrap stumps 

Example: Plot 20.8 shown in boosting application to the 15-class gene expression data set cancer, 

displaying the test error for cancer v. non-cancer as a function of the total number of trees and the 

interaction depth d. In this case, using stumps for good enough, outperforming d=2 , and boosting 

d=1 or 2 outperform RF. The two boosted models have λ=0.01. The differences between the three 

are small, around0.02. the single tree error rate is 24%. 

Plot 20.8- Boosting v. RF 

 

20.2.7-Bayesian Additive Regression Trees (BART).   

The BART is another ensemble methos related to both Bagging and Random Forests but differs 

from both in how its trees are generated.  

Let  𝑓𝑘
𝑏(𝑥)  be the prediction at x for the kth regression tree used in the bth iteration, summing up 

the K trees a the end of each iteration for b=1, 2, . . . , B as 𝑓𝑏(𝑥) = ∑ 𝑓𝑘
𝑏(𝑥)𝐾

𝑘=1 .  In the first 

iteration all trees are set to have a single root node with 𝑓𝑘
1(𝑥) =

1

𝑛𝐾
∑ 𝑦𝑖

𝑛
𝑖=1  hence  𝑓𝑏(𝑥) =

∑ 𝑓𝑘
1(𝑥) =𝐾

𝑘=1
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 . In subsequent BART updates each of the kth trees, in iteration bth, BART 
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updates the kth tree by subtracting each response value from the predictions from all except the 

kth tree. This produces a partial residual rather than building a new tree by randomly modifying 

the tree from the previous iteration to improve the fit to the partial residual: 

𝑟𝑖 = 𝑦𝑖 − ∑ 𝑓𝑘′
𝑏

𝑘′<𝑘 (𝑥𝑖) − 𝑓𝑘′
𝑏−1(𝑥𝑖)       (20.28) 

We disregard the first few predictions known as the burn-in period. The important step in the 

BART algorithm is improving the fit by modification to the current partial residual of the tree from 

previous iterations rather than fitting a new tree by limiting how hard we fit the data. In effect, 

random modification of a tree to fit the residual is drawing a new tree from the posterior 

distribution.  

Fig. 19.5.8 shows a BART application to the Heart data, with 100 in-burn iterations, K=200, 

B=1,000, and the number of in-burn period interactions L=100. BART performs well with minimal 

tuning.  

Plot 20.9 BART ensemble method genes data 

 

20.4 Models with  p ≥ 𝑵.  

An example p ≥ 𝑁 is the technology of gene expression in biology, a p matrix of 2308 genes by 

N samples of 63 from a set of experiments. When the number of features is much larger than the 

number of observations, for example, in computational biology, overfitting and high variance 

become major estimation concerns and regularilization methods provide the key to resolve the 

high-dimensionality problem with p ≥ 𝑁.       
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The Simulated example of in Plot 20.10 shows the problem with box-plots of relative test-error 

(test error /𝜎2) over 100 simulations for N=100 using three values of the ridge regularization 

λ=0.001, 100, 1000 (from left to right). The average effective d.f. of the fit and the number of 

features are shown at the bottom and top of the plot. The average number of 𝑡𝑗 =
�̂�𝑗

𝑠�̂�𝑗
 higher than 2 

were 9.8, 1.2, and 0.0, At p=20 most of the significant coefficients are identified, at p=N=100 some 

of them are but at p=1000>N none of them are, even though many are zero. Even higher values of 

the tuning parameter λ do not help when p>N. There are two types of solutions for the case of p 

≥ 𝑵 either to modify the regularized procedure for p<N, or to employ a non-regularized one such 

as PCA.  

 

Plot 20.10 PCA with Genes Data  

We cannot apply LDA for p ≥ 𝑵 but we can modify the procedure by imposing regularization on 

it. A common regularization is that features with each class are independent, that is, the within-cell 

covariance matrix is diagonal, with the diagonal covariance LAD as the discriminant for class k 

given by  

𝛿𝑘(𝑥
∗) =  −∑

(𝑥𝑗
∗−�̅�𝑘𝑗)

2

𝑠𝑗
2

𝑝
𝑗=1 + 2𝑙𝑜𝑔𝜋𝑘     (20.29) 

Where 𝑥∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑝
∗)𝑇 is a vector of expression for a test observation, 𝑠𝑗is the pooled with-

class standard deviation of the jth gene, and �̅�𝑘𝑗 = ∑ 𝑥𝑖𝑗/𝑁𝑘𝑖∈𝐶𝑘
 is the mean of 𝑁𝑘 values of gene 

j in class for𝐶𝑘 set for class k. �̃�𝑘 = (�̃�𝑘1, �̃�𝑘2, … �̃�𝑘𝑝)𝑇is called the centriod of class k. The 

drawback of the diagonal LDA is the employment of all of the features (genes) and must therefore 

be modified with p ≥ 𝑵 applications so that the features that contribute negliligibly to the class 

predictions are excluded. This is done here by a procedure that shrinks the classwise mean toward 
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the overall mean for each feature separately, called the Nearest Shrunken Centeriods (NSC) 

defined as  

𝑑𝑘𝑗 =
�̅�𝑘𝑗−�̅�𝑗

𝑚𝑘(𝑠𝑗+𝑠0)
        (20.30) 

Where �̅�𝑗 is the aggregate genes mean, 𝑚𝑘
2 =

1

𝑁𝑘
−

1

𝑁
 , and 𝑠0 is a small positive constant, typically 

the median value of 𝑠𝑗, to degrade large 𝑑𝑘𝑗 for expression values close to zero, shrinking them 

toward zero by a soft threshold    

𝑑′
𝑘𝑗 = 𝑠𝑖𝑔𝑛(𝑑𝑘𝑗)(|𝑑𝑘𝑗| − ∆)

+
     (20.31) 

Where each  𝑑𝑘𝑗 is lowered by an amount of |∆|, set to zero if the value is less than zero, using a 

soft threshold function explaed in Fig. 20.4. 

We note that the genes with nonzero  𝑑𝑘𝑗 contribute to the test error prediction, a very great 

majority of genes are just ignored. For example, in an application to the shrunken covariance LDA 

with soft threshold to the gene expression data set, 43 out 63 features (genes) were dropped out. 

This procedure can also be applied to a two-class classification when p ≥ 𝑵. With K coefficient 

vectors of log-odds parameters, we regularize a symmetric multiclass logistic model by 

maximizing the penalty log-likelihood  

min
(𝛽0𝑘𝛽𝑘)1

𝐾
[∑ 𝑙𝑜𝑔𝑃𝑟(𝑔𝑖|𝑥𝑖) −

𝜆

2

𝑁
𝑖=1 ∑ ||𝛽𝑘||2

2 ]  𝐾
𝑘=1     (20.32) 

Fig. 20.4 Shrinking Predictors by NSC 

 

The regularization automatically resolves the excess parameter problem with its binary outcome 

variable by forcing ∑ �̂�𝑘𝑗 = 0, 𝑗 = 1,… , 𝑝𝐾
𝑘=1 . 
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Regularized discriminant analysis (RDA) is an alternative procedure that employs the inversion of 

a very big p x p within-covariance singular matrix with largest rank of N < p. RDA resolves the 

singularity problem by applying regularization to the estimated within-covariance ⅀̂ shrinking it 

toward its diagonal 

∑̂(𝛾) = 𝛾∑̂ +(1−𝛾)𝑑𝑖𝑎𝑔(∑̂),𝑤𝑖𝑡ℎ 𝛾 ∈ [0,1]     (20.33) 

Here 𝛾 =0 corresponds to diagonal LDA, that is, the version of nearest shrunken centroids without 

shrinking. This procedure is like a Ridge regression that shrinks the total input covariance matrix 

towards a (scale) diagonal matrix, hence employing an ℓ2 parameters penalty regularization of all 

nonzero coefficient estimates without features selection. We can also select ℓ1penalty 

regularization with a Lasso procedure that sets a portion of the coefficients exactly equal to zero 

by   

min
𝛽

1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗)

𝑝
𝑗=1 )2𝑁

𝑖=1 +𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1     (20.34) 

Lasso can also be applied to a two-class classification with the outcome as +, - 1, and zero cutoff 

point to the predictions. Lasso regularization is rather drastic. A compromise between 𝐿2 and 

𝐿1penalties is provided by the elastic net penalty with its 𝛼 parameter determining the mix of 𝐿2 

and 𝐿1 

∑ (𝛼|𝛽𝑗| + (1 − 𝛼)𝛽𝑗
2𝑝

𝑗=1        (20.35) 

Compared to Lasso, this procedure has the potential advantage of resulting in less drastic 

shrinkage, more non-zero coefficients with p > N. 

Example. Protein mass spectrometry, is a technology used for analyzing the protein in blood is an 

example of a Lasso application when p ≥ 𝑵.   

Plot 20.11 shows an example with the average spectra for healthy individuals and those with 

prostate cancer. There are 16,898 number of m/z- the mass over charge ratios, ranging from 2000 

to 40,000 for the sample size of 157 healthy and 167 cancer patients. The aim is to find m/z sites 

that can tell apart the two groups with the predictors as a function of m/z. 
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Plot 20.11-Test error for cancer data 

A less smooth, harder Lasso fit achieves a noticeably small test error rate penalty. That may not be 

a helpful solution though since here the technology must discriminate peaks for the spectra for a 

sample of healthy and cancer patients. One way to resolve this issue is to apply a peak-extraction 

procedure to hierarchical clustering to the positions of these peaks along the m/z axis and cut the 

resulting dendrogram horizontally at height log (0.005)-assuming that peaks 5% apart are 

considered a part of the same cluster, and compute the peak positions in each cluster leading to 

728 common clusters. The results are shown in table 20.4 for the number of test errors for 728 

peaks and corresponding protein sites. Lasso hard fit does better, however, Lasso on 35 peaks is 

still more useful providing 35 sites for a follow-up study.  

 

Table 20.4 Shrinkage with Protein data  

20.5 Relation of ML nonlinear Models to Nonlinear Econometrics and their Application  

The nonlinear ML regression and classification has some advatages compared to traditional 

nonlinear econometric models. Tree models are easy to interpret, ans easy to explore their 

partitioning ability, that is, to classify observations correctly using covariates, they can classify 

qualitative variables without having to specify dummies, and can estimate means and interaction 

effects without prior specification, and, finally, deal with hetroeskadasticity of non-constant 

variance. On the other hand, single trees have a tendancy to overfit, and have relatively low 

predictive accuracy. Importantly, trees do not produce any regression coefficient estimates, hence 

inference for quantitification of the relationship bewteen the response and covariates is 
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problematic, although the non-linear ML tree-based response prediction does not face the same 

problem. Another issue is  computational time intensity of the nonlinear tree-base models as the 

number of covariates increase, although parallel Boosting, Bagging and Random Forests models 

can be employed to reduce computational time. 

There are two issues that connect ML tree models and to nonlinear econometric models, namely 

nonparametric regression and threshold regression. Tree models can be seen as the simple form of 

a nonparametric model 

𝑦𝑖 = 𝑚(𝑥𝑖) + 𝜀𝑖        (20.36) 

where 𝑚(𝑥𝑖) = 𝐸[
𝑦𝑖

𝑥𝑖
] is the conditional mean and 𝜀𝑖 are random errors; m assumes no particlar 

parametric function, and estimated at particular local values of x. A common method is to aveage 

all y values or some local window of x, By sliding that window along the domain of x one can 

estimate the entire regression function over the size of the window, also known as the bandwidth; 

further improvements can be achieved by using kernel functions that empoly weights based on the 

distance of  the observations wihin a bandwidth from the particular value of x under consideration, 

see chapter 11. Given a suitably selected kernel and some adjustment to the bandwidth, the 

nonparametric econometric models can replace CART. Trees can also be seen as step functions, a 

piece-wise constant functions with the step functions approximating splits (tree branch nodes); 

however, the covariates must be processed prior to nonparametric application, for example, by 

transforiming categorical variables to a set of dummy variables. However, nonparametric and 

threshold econometric models have a rich theoratical basis for rate of convergance and their 

asymptotic properties that allow inference and causal analysis. This confines the ML nonlinear 

models with little theoretical basis to response prediction applications by side-stepping inference.  

20.6 Inference with tree-based models  

For a small tree, it is possible to visualize the role of each variable in tems of its partitioning ability 

that corresponds to the importance or significance of that variable. The ML nonlinear importance 

score  becomes harder to obtain as the number of variables increase or if Bagging and/or Random 

Forests are employed. Still, the imprtance/significance of a variable can be determined by 

quantifying the increase in regression RSS, or classification Gini if that variable was excluded from 

the tree, by repeating this process for B trees and averaging the increse in RSS or Gini as the 
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variable’s importance score. This process is repeated for all the variables to obtain an importance 

score. A large score indicates that the variable is important and should not be excluded. Fig. 20.12 

shows an example of  an importantce score plot. 

 

Fig. 20.12 Importance score with 54 predictors 

Where variable V11 is the most imprtant, implying that its removal from the tree(s) results in the 

largest average increase in the Gini index; the second largest is V12, etc. The importance varaible 

score keeps the largest ones with the largest values and excludes those with low values. However, 

there is no theoretical basis to the score plot and that makes its use of limited value in econometrics, 

particularly since coefficient test statistics ate missing.    

Even with a single binary treatment, we can obtain the conditional avaerage treatment effect y(x) 

by  

Y (x)=E[y|d=1, x]- E[y|d=0, x]      (20.37) 

Rather than partitioning based on minimizing RSS or Gini, Athey and IMbens (2016) propose to 

choose a variable left and right split that maximizes the squared difference between the estimated 

treatment effects by 

∑ ( �̅�1 − �̅�0)
2 +𝑙𝑒𝑓𝑡 ∑ ( �̅�1 − �̅�0)

2
𝑟𝑖𝑔ℎ𝑡       (20.38) 
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Where the bar above the variables indicates the mean of the observations, providing a causal 

interpreation of the treatment effects. However, treatment models constitute a relatively a small 

part of econometric models, and it remains to be seen how generalizable this proposed approach. 

It is fair to say that non-linear ML models are mainly for prediction, and are still in early stages of 

development for inference compared to the linear ML inference examined in chapter 19.   

20.7: Deep learning Networks 

ML neural networks are nonlinear models that extract linear combinations of inputs and then model 

the response as a nonlinear function of the derived features. A network (or graph) is a pair of V= 

(1, . . . n) set of nodes (intersections; angles) and E set of edges between them presented by an N-

dimensional adjacency matrix (V × E) that shows the closeness of two corresponding nodes, 

usually measured by the Euclidian distance between them. Networks are graphs that represent 

economic activities, while neural networks are techniques used to identify hidden patterns in the 

data; networks are often used as inputs into neural-based ML models including deep network, 

convolutional and recurrent networks. Neural Networks (NN) extracts a linear combinations of 

inputs and transform them into non-linear functions of the response. The NN models are classfied 

into a single hidden layer Shallow NN, also called Valina NN, and  multiple hidden layers Deep 

NN; the most common Shallow NN is the Feed Forward NN. Deep learning has the neutral-

network as its core regression with two special cases: Recurrent Neual Net (RNN) with sequential 

data and time-series, and  Convolutional  Neual Net (CNN) for classification, usually applied to 

image classification based on Euclidean distances; examples are economic closeness in migration 

or international trade. However, we start with a simpler non-NN regression known as Projection 

Pursuit Regression (PPR).  

The PPR is a deep learning non-linear regression used to specify the direction of variables along 

a line through the origion using unit vectors.28 Let ω𝑚for m=1, 2, . . ., M  be the unit p-vectors of 

unknown parameters. Using those, the PPR is an addative model of the form 

𝑓(𝑋) = ∑ 𝑔𝑚(𝜔𝑚
𝑇 𝑋)𝑀

𝑚=1        (20.39) 

 
28 A unit vector v is defined to have a magnitude of 1; magnitude of a unit vector v=(a, b) is ||v||=√𝑎2 + 𝑏2=1, so v=(1, 

3)≠1 is not a unit vector while v=(0, 1) is; unit v has the same direction, same angle formed with the horizontal X-axis, 

of the vector v but a magnitude of 1. The division of u=v/||v|| results in the unit-vector v.   
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However, the model uses derived features𝑉𝑚 = 𝜔𝑚
1 𝑋rather than the oroginal features, the function 

𝑔𝑚 is unspecified and estimated, together with ω𝑚 directions. We wish to estimate  ω𝑚 by a 

suitably flexible smooth regression so that the model “projection pursuit” or fits well; 𝑔𝑚 = 𝜔𝑚
1 𝑋 

is called a Ridge function in ℝ𝑝. PPR is a general model that can form many nonlinear functions 

of linear combinations, for example, the product 𝑋1. 𝑋2can be alternatively presented additively by 

PPR as [ (𝑋1 + 𝑋2)
2 − (𝑋1 − 𝑋2)

2]/4.  

The fitted PPR is hard to interpret because the inputs enter the model nonlinearly e.g. as 

interactions, so it is usually used for prediction purposes, except when M=1, called the single index 

model in econometrics. PPR approximately minimizes the error function by  

∑ [𝑦𝑖 − ∑ 𝑔𝑚(𝜔𝑚
𝑇𝑀

𝑚=1 𝑥𝑖]
2𝑁

𝑖=1        (20.40) 

We impose complexity restrictions on 𝑔𝑚 to prevent overfitting. The number of M is part of the 

PPR model building estimation; cross-validation is used to determine M; additional steps are 

required when the next term fails to improve the fit noticeably.  

Single Hidden Layer Neural Net. A neutral network employs a vector of predictors p for X=(𝑋1,

𝑋2, . . . , 𝑋𝑝) to construct a non-linear function f(X) in order to predict the response variable y; the 

approach differs from the machine learning tree-based on non-linear regressions of Boosting, 

Random Forests in the model structure. Fig. 20.1 explains the simplest vanila neutral net with a 

single hidden layer, Back-Propagation Net, known as the Feed-Forward Neural Network. The plot 

on the right shows a quantitative response function and that on the left a qualitative classification 

response function.  

Fig 20.13 Single Layer NN 
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The two figures present a very similar model structure though with a different response variable. 

On the left we have p=4 predictors or features that make up the input layer; each p feeding the K 

pre-selected hidden units obtained from linear combination of the input layer. The unobservable 

hidden layer units are then also combined linearly and used to predict the response function. The 

model is of the following form 

𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑘ℎ𝑘(𝑋) =𝐾
𝑘=1 𝛽0 + ∑ 𝛽𝑘𝑔

𝐾
𝑘=1 (𝜔𝑘0 + ∑ 𝜔𝑘𝑗

𝑝
𝑗=1 𝑋𝑗)  (20.41) 

Model construction is a two-step model process. First, we compute the K activations𝐴𝑘as a 

function of input features; 𝐴𝑘is a different transformation of the original 𝑋1, . . . ,𝑋𝑝 

𝐴𝑘 = ℎ𝑘(𝑋) = 𝑔(𝜔𝑘0 + ∑ 𝜔𝑘𝑗
𝑝
𝑗=1 𝑋𝑗)      (20.42) 

Where g(z) is the non-linear pre-specified activation function; the K=5 activations are then feed 

into the output layer leading to the linear regression  

𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑘
𝐾
𝑘=1 𝐴𝑘        (20.43) 

The model must provide estimates from data of all parameters 𝛽0, … 𝛽𝐾   and 𝜔10, … , 𝜔𝐾𝑝. The 

common activation functions employed are sigmoid (also employed in logistic functions to convert 

a linear function to 0-1 probabilities. Early neutral net applications favored the sigmoid activation 

function, also used in logistic regression to transform a linear function into 0-1 probabilities.  

𝑔(𝑧) =
𝑒𝑥

1+𝑒𝑧 =
1

1+𝑒−𝑧         (20.44) 

However, the same outcome can be obtained without the sigmoid activation function by the radial-

basis functions (RBF) defined as 

Radial Basis: S(x) = exp(x-2)        (20.45) 

The modern preference is for the Rectified Linear Unit (ReLU) which thresholds at zero and allows 

more efficient computation, Fig. 20.2 shows the piece-wise linear ReLU behavior. 

𝑔(𝑧) = (𝑧)+ = {
0   𝑖𝑓 𝑧 < 0

  𝑧  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       (20.48) 
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Fig. 20.14 sigmoid v. ReLu functions 

 

Without the non-linear activation function, the model is reduced to a simple linear one; however, 

non-linearity captures complex interaction patterns.  

20.8 Deep Learning- Multiple Hidden Layers Neural Net. Modern Neutral Net regression employs 

more than one hidden layer; usually many units per layer. Fig. 20.15 presents a multilayer network 

with two hidden layers 𝐿1&𝐿2and ten output variables representing a single qualitative variable.  

Fig. 20.15 Multilayer NN  

 

The first hidden layer with an activation function as  

𝐴𝑘
(1)

= ℎ𝑘
(1)

(𝑋) = 𝑔(𝜔𝑘0
(1)

+ ∑ 𝜔𝑘𝑗
(1)

𝑋𝑗)
𝑝
𝑗=1      (20.49) 

For k=1, 2, . . . ,𝐾1. The second hidden layer takes the 𝐴𝑘
(1)

 activations. The second hidden layer 

takes the 𝐴𝑘
(1)

activations as input to compute the new activations for ℓ=1. 2. . . 𝐾2with  

𝐴𝑘
(2)

= ℎ𝑘
(2)

(𝑋)  = 𝑔(𝜔𝑘0
(2)

+ ∑ 𝜔𝜄𝑘
(2)

𝐴𝑘
(1)

)
𝐾1
𝑘=1      (20.50) 
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The process makes the second layer a function of X via the first layer activations𝐴𝑡
(2)

= ℎ𝑡
(2)

(𝑋); 

and the network builds complex transformations of X as features fed into the output layer. The 

final step is to compute ten different linear models   

𝑍𝑚 = 𝛽𝑚0 + ∑ 𝛽𝑚ℓℎℓ
(2)𝐾2

ℓ=1 (𝑋) = 𝛽𝑚0 + ∑ 𝛽𝑚ℓ𝐴ℓ
(2)

𝐴ℓ
(2)𝐾2

ℓ=1 ,   (20.51) 

for m=0, 1. . . . ,9. Define 𝑓𝑚(𝑋) =  𝑃𝑟(𝑌 = 𝑚|𝑋) as class probabilities and use the special Softmax 

activation function that secures ten non-negative probabilities that sum up to one.   

𝑓𝑚(𝑋) =  𝑃𝑟(𝑌 = 𝑚|𝑋) =
𝑒𝑍𝑚

∑ 𝑒𝑍ℓ9
ℓ

       (20.52) 

More generally, the derived features𝑍𝑚 are generated from the activations as a function of the 

transformation function for  𝑍𝑚  hidden units by  

𝑍𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇 𝑋),𝑚 = 1, … ,𝑀 

𝑇𝑘 = 𝛽0𝑘 + 𝛽𝑘
𝑇𝑍, 𝑘 = 1,… . , 𝐾, 

𝑓𝑘(𝑋) = 𝑔𝑘(𝑇), 𝑘 = 1,…𝐾, 

Where 𝑍 = (𝑍1,𝑍2, … , 𝑍𝑀), 𝑎𝑛𝑑 𝑇 = (𝑇1, 𝑇2, … 𝑇𝐾). We note that with the transformation function 

σ(v) as the identity function, the entire model reduces to linearity in inputs, making it clear that the 

neutral network model is a nonlinear generalization of the linear model by the transformation 

function. We also note that the single layer network is identical to the PPR model; though the latter 

employs a nonparametric 𝑔𝑚(𝑣) form compared to the simpler networks with three free 

parameters σ(v). Hence, using the neutral network model to express PPR leads to 

𝑔𝑚(𝜔𝑚
𝑇 𝑋) =  𝛽𝑚𝜎(𝛼𝑜𝑚 + 𝛼𝑚

𝑇 𝑋) = 𝛽𝑚𝜎(𝛼0𝑚+ ∥ 𝛼0𝑚 ∥ (𝜔𝑚
𝑇 𝑋 ))  (20.53) 

Where 𝜔𝑚 = 𝛼𝑚/∥ 𝛼𝑚 ∥ is the mth unit vector; since 𝜎𝛽.𝑎0.𝑠(𝑈) =  𝛽𝜎(𝛼0 + 𝑠𝑣) has lower 

complexity than g(v), the networks model uses many more activation functions than the PPR.  

We use the identity 𝑔𝑘
(𝑇)

= 𝑇𝑘 for the regression transformation while for classification, it is more 

common to use the Softmax function; the same transformation is also used with the multilogit 

model.  
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𝑔𝑘(𝑇)  = 
𝑒𝑇𝑘

∑ 𝑒𝑇ℓ𝐾
ℓ=1

        (20.54) 

With the qualitative responses, we obtain coefficient estimates that minimize the negative 

multivariate log-likelihood called the cross-entropy. 

−∑ ∑ 𝑦𝑖𝑚9
𝑚=0 log (𝑓𝑚

𝑛
𝑖=1 (𝑥𝑖))      (20.55) 

We would have minimized squared error loss function if the responses were quantitative. 

Typically, there are many times more parameters to estimate in neural networks than the number 

of observations; to avoid overfitting some regularization must be imposed on the network 

regression models.  

Example 1-Simulated Data  

Generate data from 𝑌 = 𝑓(𝑋) +  𝜀 for two additive Networks models.   

Sum of Sigmoids: 𝑌 =  𝜎(𝛼1
𝑇𝑋) +  𝜎(𝛼2

𝑇𝑋) + 𝜀1    (20.56) 

Redial: 𝑌 =  ∏ ∅(𝑋𝑚) + 𝜀2
10
𝑚=1       (20.57) 

Where 𝑋𝑇 = (𝑋1, 𝑋2, . . . , 𝑋𝑝); p=2 with 𝛼1 = (3, 3)and 𝛼2 = (3,−3)in the first model and p=10 

for the radial model. Both models have Gaussian errors, with variance chosen so that the signal-

to-noise ratio   

𝑉𝑎𝑟(𝐸(
𝑌
𝑋)

𝑉𝑎𝑟(𝑌 − 𝐸 (
𝑌
𝑋))

 =    
𝑉𝑎𝑟(𝑓(𝑋))

𝑉𝑎𝑟(𝜀)
 

is 4 in both models. We fit networks with weight decay and different numbers of hidden units to 

obtain the average test error 𝐸𝑇𝑒𝑠𝑡
(𝑌 − 𝑓(𝑋))2for each of the 10 random starting weights. Fig. 20.4 

shows that the neutral network (on the left) works well with the Sigmoid model, and the two-unit 

model has the best performance, achieving an error close to the Bayes rate (the regression error 

variance). We note that with more hidden units, overfitting quickly becomes a problem and with 

some starting weights, the model does worse than the linear one. The Radial function (on the right) 

does not do well; it has an error greater than the Bayes error. Fig.20.5 repeats the exercise for the 

Sigmoid model with no weight decay and the Radial model with weight decay (λ=0.1); the former 

results in severe overfitting, while the latter produces good outcomes at all number of hidden units 



 410 

with no evidence of overfitting. In short, there are two free parameters to select: weight decay λ 

and the number of hidden units. 

Fig.  20.16 Nonlinear Transformation functions 

 

Table 20.17 Declining Weight function 

 

Example: The Handwritten Digit Recognition MNIST is a famous data set MNIST handwritten-

digit prediction problem.  shown in Fig. 20.3 displays a small segment of the MNIST data. We 

have two hidden layers; and 𝐾1=256 and 𝐾2=128 hidden units, and the output layer with 10 units. 

This network has 235,146 parameters or weights, including the intercepts called biases.The data 

for this comes from the handwritten ZIP codes on the envelopes from the US Postal mail. Each 

image is a segment from a five-digit ZIP code, isolating a single digit. The images are 16 x 16 

eight-bit grayscale maps, with each pixel ranging from 0 to 255. Plot 20.12 displays some sample 

images. The goal is to predict from the 16 x 16 matrix of pixel intensities the identity of each image 

(0, 1, . . . , 9) accurately, a classification problem that requires a low error rate to prevent 

misdirection of mail. In this study, there are 320 digits in the training set, 60 in the test set. 
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Plot 20.12 Section of Handwritten Digital MNIST 

20.9 Fitting a Neutral Network- 

Since NN models must minimize a non-linear function, whose curvature has often multiple 

minimization solutions; obtaining a global solution that dominates local ones faces a non-

convexity problem; two strategies usually are employed as a solution. The first, called slow 

learning, uses the slow iterative gradient descent method for the second derivative of the 

minimum. function and stops the iteration when the prediction error stops decrease: 

minimize
(𝑤𝑘)1

𝐾,𝛽

1

2
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1      (20.58) 

Where 𝑓(𝑥𝑖) = 𝛽0 + ∑ 𝛽𝑘𝑔(𝑤𝑘0 + ∑ 𝑤𝑘𝑗𝑥𝑖𝑗)
𝑝
𝑗=1

𝐾
𝑘=1 . 

Plot 20.13 explains that procedure visually with two minimum solutions of the objective function 

R(θ) with θ = -0.46 for local and θ=1.02 for global. At each step, θ moves downhill against the 

gradient, setting t ← t-1until it cannot go down any further; in this example the global solution is 

reached in 7 steps.  

We solve by the chain rule of differentiation that shows a fraction of the residual assigned to each 

parameter (via chain rule)- a process known as NN Backpropagation. However, the slow learning 

method involves many steps and with a large n number of observations; we should work with a 

small minibatch of n observations each time to compute a gradient step, a process known as 

Stochastic Gradient Descent (SGD), the current deep learning state-of-the-art minimization 

method.  

The second procedure is to regularize the minimization by imposing Ridge or Lasso penalties on 

the parameters. For example, for regularization, essential to avoid overfitting, we can use the 

earlier MNIST data as an example to augment the minimization function with a Ridge penalty term 
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Plot 20.13 local v. global monimization 

 

𝑅(𝜃;  𝜆) = −∑ ∑ 𝑦𝑖𝑚log (𝑓𝑚
9
𝑚=0 (𝑥𝑖)) +𝑛

𝑖=1 𝜆 ∑ 𝜃𝑗
2

𝑗  (20.59) 

using different tuning λ values for different group layer weights as shown for the MNSIT network 

in Fig. 20.12 for training and validation errors as a function of training epochs for the log-

likelihood objective. 

Plot 20.14 Validation error  

 

For classification NN, we work with the Softmax activation function and the Cross-Entropy 

Error function, this neutral net is identical to a linear logistic regression with n hidden units; 

estimating all parameters by maximum likelihood. A solution that minimizes R(θ) globally is likely 

to be an overfit, hence we either regularize directly by adding a penalty term, or indirectly by 

adopting an early stopping rule. The general rule to the minimization of R(θ) is by the Gradient 

Descent method, derived using the chain rule of differentiation. The solution involves two 

processes. In the Forward Pass, the current weights are fixed and the predicted values are𝑓𝑘(𝑥𝑖) 

are computed; in the Backward Pass, the δ𝑘 activation functions are computed and 

Backpropagated to obtain 𝑠𝑚𝑖, and then use both errors to compute the gradient by iteration 

(unclear). This two-pass process is called the Delta Rule, each hidden unit passes and receives 

information only from units with a shared connection; we have a Training Epoch if the updating 
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is replaced with one sweep through the entire training sample. Back-propagation is simple with 

local fit but can be very slow due its minimization involving the computation of its second-order 

solutions.  

We should also note the following issues in implementation: 

Starting values for weights should be chosen randomly close to zero, and then the model will 

become more non-linear as the weights increase.  

Too many weights overfit the data for the global minimum of R. Weight decay is a more explicit 

regularization similar to the Ridge for the linear method that adds a penalty to the error function 

R(θ)+λJ(θ) with tuning parameter λ ≥ 0, where 

𝐽(𝜃) =  ∑ 𝛽𝑘𝑚
2

𝑘,𝑚 + ∑ 𝛼𝑚ℓ
2

𝑚,ℓ       (20.60) 

Use cross-validation to choose λ; larger values of λ shrink the weights toward zero as in the Ridge 

regression. At the outset standardize all features to have mean zero and standard deviation one, 

and finally, remove the large effects of input scale on the final result. In general, it is better to have 

too many hidden layers than too few so as to avoid missing important non-linear complexities; we 

can always reduce weight toward zero if necessary. With multiple minima, it is better to average 

predictions over the networks instead of using weights averaging since then the model nonlinearity 

suggests the averaged solution might have a disappointing result.  

Dropout Learning Network is a relatively new and efficient regularization similar to Ridge and 

inspired by the Random Forests model in randomly removing a fraction ɸ units in a layer when 

fitting the model, separately each time a training observation is processed. The remaining units 

substitute the missing observations and their weights are scaled up by a factor of 1/(1 -ɸ ) for 

compensation as a kind of regularization. Fig.20.18 (right) displays dropout network; gray nodes 

are randomly selected and disregarded in training set.  

Fig. 20.17 Dropout network 
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Learning methods tend to work best for intermediate levels of the bias-variance trade-off 

complexity, suggesting interpolation to get low training error results in high test error. A method 

that interpolates the training data well by making the training model less complex is known as 

Double Descent, it simulates the model from  

𝑌 = sin(𝑋) +  𝜀 

Where   𝑋 ∼ 𝑈| − 5,5|  (uniform distribution), and 𝜀 ∽ 𝑁(0, 𝜎2) with  𝜎 = 0.3. 

An application of Double Descent for n=20 is shown in Fig. 20.14, when the degree of freedom is 

d=n, interpolation threshold is zero and remains zero thereafter; the test statistic increases sharply 

at the threshold but descends to an acceptable level before a final rise. 

Plot 20.15 training and test d.f. 

 

20.10 Document Classification is an important kind of ML application for predicting attributes of 

documents, for example investors’ attitudes from a large set of text comments. Internet Movie 

Database or IMDb includes short review movie critiques; the response variable in this case is the 

positive or negative sentiment of the reviewers. Each review can be of a different length, including 

nonwords, spelling errors, slang, etc. Prediction requires finding the features of a document, or 

featurizing it; the Bag-of-Words model is simplest for this purpose. The Bag-of-Words scores each 

document for the presence or absence of each of the words in a language dictionary, usually 

English. We limit the dictionary to M words, that means for each document, we generate a binary 

feature vector of length M, and score 1 for every word present, zero otherwise. We use 10,000 most 

frequently occurring words in the sample of 25,000 reviews, resulting in a training feature matrix 

of 25,000 ⸼ 1000, though only 1.30% of the binary entries are nonzero, most are zero: that is, the 

matrix is sparse.  For model tuning, we split a validation set of 2,000 from the training observations 

of 25,000, and fit two model sequences: a Lasso logistic and a two-class Neural network, with two 
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hidden layers; each layer with 16 ReLU hidden units. The outcome appears in Plot 20.16, showing 

both have a tendency to overfit and reach roughly the same test accuracy.  

 

Plot 20.16 IMDb Bag-of-Words review 

The m Bag-of-Words model summarizes a documents by the  presence/absence of a word 

regardless of its context; There are two ways to take context into account; the first treats each 

document as a sequence of words preceding and following them, the second uses the Bag-of-Gram 

model, for instance ith n=2, we have a bag of 2-grams with consecutive co-occurrence of every 

distinct pairs of word such as convincingly effective as a positive sentiment and convincingly 

ineffective as a negative sentiment. We shall return to an alternative ML analysis of this example 

by RNN below.   

20.10 Convolutional Neutral Net - CNN 

Table 20.5 shows the result of five networks fitted to this data; all networks have Sigmoidal output 

units fit with the sum-of-squared error function: Net-1 has no hidden layer; it starts overfitting 

quickly. Net-2 is a single hidden layer vanilla model with 12 hidden units, Net-3, 4 and 5 have 

each hidden units connected to only a batch of units in the layer below; here locally extracting 

features from the layer below significantly reduces the number of weights. In this example, Net-5 

does the best with errors of 1.6% compared to the vanilla Net-2 of 13%. Sharing the same set of 

nine weights forces the extracted features in the different parts of the image to be computed by the 

same linear functional, therefore, such networks are named as Convolutional Networks. 

Table 20.5 NN with different hidden layers 
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The Deep networks models have two specializations, roughly spatial data changing over space, 

and sequential data changing over time or by relative positions, for example, word positions in a 

text; the latter is called the Convolutional Neural Network (CNN) and the former Recurrent Neural 

Network (RNN). The architecture of a CNN (its inputs or neuron, number of layers and weights 

used in the regression) is best understood through an image processing application; the method is 

employed in areas such as image recognition and are increasingly used for time-series forecasting. 

The CNN classification identifies specific features in the image to separate each specific class of 

objects. CNN works with two types of hidden layers of data. The CNN filter builds up a 

hierarchical process by combining hidden Convolutional Layers, searching for small patterns; and 

CNN Pooling Layers down sample the patterns into prominent subsets. A convolution operation 

boils down to repeatedly multiplying matrix elements and then adding the results; a simple 4 x 3 

image example is  

 

Impose a 2 x 2 filter on the image 

 

Then apply convolution to the image with the filter to obtain 

 

Note that each 2 × 2 image submatrix is multiplied by the 2 × 2 filter matrix to produce each 

element of the convolved matrix. For example, multiplication of the first top left image matrix by 

the filter leads to the first right element of the convolved matrix; that of the last 2 × 2 image 

submatrix (bottom right) with the filter leads to the last element (left) of the convolved matrix. 

This process condenses the nearby local features. Hence, the convoluted image gives prominence 
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to the small patterns that look like the convoluted filters. Note that the CNN filters are not 

predefined; CNN learns the filters for the classification problem at hand.  

CNN pooling layers summarizes a large image into a smaller one by condensing it. One way to do 

this is by Max Pooling Process that sums up each 2 x 2 block of pixels in an image using maximum 

value in the block to reduce its size by a factor of two in each direction as explained in the following 

example,   

  

The two main blocks of the CNN are the Feature Extraction and Prediction blocks. The Prediction 

Block is a Feed Forward deep NN examined above, and the elements of the Extraction Block are 

convolutional layers, on-linear transformation of the data pooling layers for dimension reduction, 

and a fully connected (deep) Feed Forward NN; elements are combined together in a sequence of 

layers: 

convolution + nonlinear transformation → pooling → convolution + nonlinear transformation → pooling → . . . → Fully-connected (deep) NN 

A computer image is a matrix of pixels each element of which represents the intensity of the pixels 

and its dimension is the resolution of the image with color as the third dimension, hence the image 

is a three-dimensional matrix; an image kernel is a small matrix employed to filter effects such as 

blurring and sharpness. Kernels are used for feature extraction which selects the most important 

portions of an image. We refer to this process as convolution. We explained different aspects of 

this process below by a number of plots. 

Fig. 20.18 is a (3 × 3) filter is applied to a (6 × 6) producing an output (4 × 4) matrix. Each element 

of the output matrix is the sum of the product between the input matrix entries and the weight 

(filter) matrix as explained in the note. Note that the shaded red (3 × 3) input matrix slides to the 

right and down by one entry.   
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Fig. 20.18 Convolutional Filter 

We note also that we can reduce the output matrix dimension by the Stride technique, that is, by 

sliding the shaded red matrix by more than one input matrix entry in order to reduce the output 

dimension shown in Frig. 20.19 

 

Fig. 20.19 convolutional layer with stride 

Due to the border effect, the convolutional matrix has smaller dimensions than the input matrix. 

We can resolve this problem by filling a border with zeros using the padding technique as shown 

in Fig. 20.20 
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Fig. 20.20 convolutional layer with padding 

Each convolutional layer may have more than one convolutional filter; Fig. 20.21 shows three (6 

× 6) matrices with two filters, and the output matrix is also a set of two (4 × 4) matrices.  

 

Fig. 20.21 convolutional layer with two convolutional filters. 

The outputs of the convolutional layer go through the activation function nonlinear transformation, 

for example, by ReLU, as in Fig. 20.22  

 

Fig. 20.22 convolutional layers with nonlinear transformation 

In the final step, we apply the method for dimension reduction, a common pooling method 

employed is the Max Pooling whereby the final output is the maximum entry in a sub-matrix of 

the convolutional layer output as explained in Fig. 20.23 

 

Fig. 20.23 nonlinear transformation with two convolutional filters 
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The above process is repeated as many times as the number of convolutional layers in the networks. 

The user has to define the hyperparameters for 1) number of convolutional layers (C), 2) number 

of pooling layers (p), 3) number (𝐾𝑐) and dimension (height 𝑄𝑐, width 𝑅𝑐; depth 𝑆𝑐), and 4) 

architect of the deep NN. The parameters to be estimated are 1) Filter weights: 𝑊𝑖𝑐 ∈ ℝ𝑄𝑐× 𝑅𝑐×𝑆𝑐 , 

i=1, …, 𝐾𝑐, and c=1, . . ., C. 2) ReLU biases 𝛾𝑐 ∈ ℝ𝐾𝑐, c=1, . . ., C. 3) all the parameters of the 

fully connected deep network.  

20.11Recurrent Neutral Net (RNN)- 

RNNs are Networks that allow for feedback among the hidden layers because they use intenal 

(memory) to process sequences of inputs. A generic RNN is presented by 

𝐻𝑡 = 𝑓(𝐻𝑡−1, 𝑋𝑡)        (20.61) 

�̂�𝑡+ℎ|𝑡 = 𝑔(𝐻𝑡)        (20.62) 

Where �̂�𝑡+ℎ|𝑡 is the prediction of 𝑌𝑡+ℎ given t, f and g are to be defined as 𝐻𝑡 and is a K-dimensional 

hidden state. As a time-series approach, the RNN is a type of state-space econometric model we 

discussed in chapter 15 here examined in the context of p > N. RNN can remembers the order by 

which inputs go through the hidden state and can sequence the data so each sample is dependent 

on previous ones as is common in time-series analysis. However, the RNN solutions are vulnerable 

to a small or divergent gradient problem. To overcome this problem, we employ a version of RNN 

called the Long-Short Term Memory (LSTM) network. Fig. 20.24 illustrates the architecture of a 

typical LSTM network where red circles indicate logistic activation, and blue circles hyperbolic 

tangent activation, and symbols × and + stand for multiplication and summation operations. The 

RNN consists of the cell state, and the forget, input, and output gates. The cell state introduces 

some memory to the LSTM to remember the past, LSTM retains only the relevant information for 

making predictions, the forget cell informs LSTM what information to throw away, and the output 

gate provides the activation for the final output at time t. The input and output gates have the same 

structure and filter the information from the previous time period as well as the new input. The 

prediction is a linear combination of hidden states ns 
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Fig. 20.24 LSTM Architecture 

RNN is designed for data that are sequential in nature, using forward and backward information 

to construct networks, e.g. lag values in a time-series, or relative positions of words in a document, 

as explained in Fig. 20.25 

Fig. 20.25 Recurrent NN 

 

The network uses the input sequence of X sequentially, each 𝑋ℓ feeds into the hidden layer with 

the activation vector 𝐴ℓ−1as input from the previous element in the sequence to obtain the current 

vector 𝐴ℓ; the same weights W, U, B (parameter estimates) are used as each element is processed. 

The output layer provides a sequence of predictions 𝑂ℓ from 𝐴ℓ though only the last one, 𝑂𝐿, is the 

target in a single target response.  

RNN takes advantage of sequential data to produces the output response while CNN does that 

using the spatial nature of data. More specifically, RNN can be expressed by a collections of K × 
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(p+1) shared weights  𝑤𝑘𝑗 for the input layer of W matrix, and U as a matrix of K × K of shared 

weights  𝑢𝑘𝑗for the hidden-to-hidden layers, and B as a K+1 vector of shared weights 𝛽𝑘 for the 

output layer, hence RNN uses 𝐴ℓ𝑘 inputs  

𝐴𝓉𝑘 = 𝑔(𝜔𝑘0 + ∑ 𝜔𝑘𝑗𝑋ℓ𝑗 +𝑝
𝑗=1 ∑ 𝜔𝑘𝑗𝐴ℓ−1,𝑆

𝐾
𝑠=1      (20.63) 

to produce 𝑂ℓ outputs 

𝑂ℓ = 𝛽0 + ∑ 𝛽𝑘𝐴ℓ𝑘
𝐾
𝑘=1         (20.64) 

Note that the weights are not a function of ℓ, the same weights are in each sequence; the 𝐴ℓ 

accumulates what has been learned before to produce predictions. For regression, a loss function 

with observations on (X, Y) is  

(𝑌 − 𝑂𝐿)
2          (20.65) 

Where the final outcome is produced from 𝑂𝐿 = 𝛽0 + ∑ 𝛽𝑘𝐴𝐿𝐾
𝐾
𝑘=1  , without using the 

intermediate values if the target is a single response type, in order to obtain parameter estimates 

that minimize the sum of squares 

∑ (𝑦𝑖 − 𝑂𝑖𝐿)
2𝑛

𝑖=1  = ∑ ((𝑦𝑖 − (𝛽0 + ∑ 𝛽𝑘𝑔(𝜔𝑘𝑜 +𝐾
𝑘=1 ∑ 𝜔𝑘𝑗𝑥𝑖𝐿𝑗 + ∑ 𝑢𝑘𝑠𝛼𝑖,𝐿−𝑖,𝑠)

𝐾
𝑠=1

𝑝
𝑗=1 ))2𝑛

𝑖=1   (20.66) 

Example 1: We examined IMDb (Internet Movie Database) with the Bag-of-Words model. The 

other alternative to analyze the document features and response sentiment is by RNN, using instead 

the sequence of words. That is, instead of using a binary vector with 9,999 zeros, we employ a set 

of m embedded real numbers none of which are zeros. Plot 20.17 shows RNN with a dictionary of 

16 words rather than 1,000 embedded in m=5 dimensions. The idea is to use the information from 

the positions of embedded words meaning in the text, for example, synonyms are placed near each 

other. We should also limit each document to L words; those shorter than L are padded with zero 

upfront so X is presented by L vectors.  

A More detailed RNN sequential document process uses the Long Term and Short Term Memory 

(LSTM) two track hidden activations so the computation of  𝐴ℓ receives input from hidden units 

both further back in time, and closer in time. This prevents the early signals being left out by the 

time they are propagated through the chain to the final 𝐴ℓ. Refitting the model with LSMT improves 
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the performance by 87% on the IMDb test data compared to the 88% gained by the Bag-of-Words 

model. 

Plot 20.17 RNN for IMDb with LSTM 

 

Example 2-Time-series Forecasting. We use the NYSE data set for three daily time series covering 

Dec. 3, 1962 to Dec. 31, 1986 for the Log Trading Volume of shares on that day relative to a 100-

day moving average of past turnover, the Dow Jones Return Difference on consecutive trading 

days, and Log Volatility for the absolute values of daily price movements; hence we have 

measurements (𝑣𝑡 , 𝑟𝑡, 𝑧𝑡) on day t and there are T=6,051 such triple observations shown in Plot 

20.18 that displays significant auto-correlation ; similar values for nearby in time.  

 

Plot 20.18 NRR for NYSE data   

 

This is displayed more clearly when we consider pairs of observations with a lag of ℓ days apart 

(𝑣𝑡, 𝑣𝑡−ℓ) and compute the auto-correlation coefficient of all lags up to ℓ=37 shown in Plot 20.19 

Here the response value is also a predictor; however, the structure of the problem differs from 
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example 1 in that we only have one series, not 25,000 series of short documents even though both 

examples exploit the sequential nature of the data sets. We can present the time-series RNN process 

Plot 20.19 autocorrelation  

 

in terms of the sequential Fig. 20.7 model that extracts many short mini-series of predefined length 

L of input X=(𝑋1, 𝑋2, . . . , 𝑋𝐿) to compute the target Y of the form 

𝑋1 = (

𝑣𝑡−𝐿

𝑟𝑡−𝐿

𝑧𝑡−𝐿

) , 𝑋2 = (

𝑣𝑡−𝐿+1

𝑟𝑡−𝐿+1

𝑧𝑡−𝐿+1

) , … , 𝑋𝐿 = (

𝑣𝑡−𝐿

𝑟𝑡−𝐿

𝑧𝑡−𝐿

) , 𝑎𝑛𝑑 𝑌 = 𝑣𝑡      

Plot 20.20 uses the NYSE data of the past five trading days to predict the next day trading volume, 

so L=5, the model fitted with K=12 hidden units using a training sample sequence derived from 

the data before Jan. 2, 1980, and then forecasted log-volume after that date to obtain 𝑅2=42% on 

the test data set. 

Plot 20.20-RNN forecast with NYSE series 

 

This is similar to running a AR(ℓ) regression with L=5 that results 𝑅2=0.41 compared to 0.42 by 

RNN.  

 

Nonlinear Factor Regression by Autoencoders.  

A nonlinear equivalent to the ML linear PCA for dimension reduction is the Autoencoders model 

by which the outputs approximate the input variables. The input variables going through neurons 
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to produce a compressed input which then is decoded or decompressed into the output layer. The 

method attempts to extract the hidden layer with the smallest number of neurons that represent the 

latent nonlinear factors. Fig. 20.26 illustrates the procedure with five inputs and three hidden layers 

with four, one and four neurons respectively. The second hidden layer 𝑄1
2reprents the latent single 

factor for extraction; the encoded layer precedes and the decoded layer follows it. 

 

Fig. 20.26 Autoencoder  

The estimated nonlinear factors are employed as inputs for ML linear or non-linear forecasting 

models as in chapter 19 and for tree-based models in this chapter.  

20.12 Overall View of the Relationship between Machine Learning and Econometrics. 

Machine Learning has opened up new, powerful tools for to predictive econometrics tasks that 

practice of the traditional methods do not permit, especially when the number of features is larger 

than the number of observations. The traditional methods, particularly the least squares, are 

impossible to apply while dimension reduction ML tools render the problem a manageable task. 

The question then is whether a good ML predictive model can be used to identify the underlying 

model implied by the ML prediction procedure; therefore, provide inference on the coefficient 

estimation. One problem with ML methods employed for making inference is the absence of 

standard errors on the coefficients. Even with ML output based linear functions, the standard errors 

would have to take into account the model selection itself, and it may be impossible to obtain 

consistent estimates after the model is selected by a data-driven procedure. Moreover, ML methods 

partition the observations into training and hold-out samples by CV folding, and re-estimate each 
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partition by a sparse ML predictor such as Lasso by regularization that amounts to setting many 

coefficients equal to zero and hence, not used in the analysis. This results in potential use of 

different predictors in different ML models used in each partitioning. Plot 20.21 shows ten 

randomly selected non-zero coefficients across ten Lasso regressions obtained by application to 

ten group of 50,000 housing units from a 2011 metropolitan sample of the American Housing 

Survey. The variables used in each partition, namely the black cells, change for each partition; 

highlighting the fundamental ML inference problem for coefficient estimation. This is not a 

problem of the quality of prediction- R2 is roughly constant across partitioned subsamples. 

However, a variable used in one partition is unused in another, resulting in a few stable patterns 

overall. This problem occurs because the variables are correlated with each other, e.g. the number 

of rooms and the unit’s land area. Then similar predictions can be obtained based on very different 

model predictors depending on the sample partition used and we have little guidance on the list of 

variables used. By contrast, in traditional econometrics correlations between observed predictors 

is indicated by standard errors that may reflect uncertainly about attributing effects to one predictor 

over the other. 

Two very different models can produce similar ML predictions because ML can fit many different 

functions without having to specify them; hence, the lack of standard errors limits ML from making 

parameter inference after the selection of the predictive model; in other words, the ML challenge 

here is parameter consistency estimation itself. Regularization contributes to this problem by 

selecting a less complex model, thereby encouraging omitted variable bias due to correlations 

between observed and unobserved variables. While a good predictive model is likely to reveal 

some underlying structure, and some econometric results suggest convergence- where the structure 

will be recovered with a high-quality prediction model, we should guide against interpreting 

parameter estimates as indication of the discovered model structure. In traditional econometrics, 

assumptions about the data generating process would permit interpretation of the estimated 

coefficients as model specification, but with ML we have to limit the variable correlation by 

assumption. Asymptotic Lasso model selection consistency requires assuming the true model has 

only a few relevant variables; none of the irrelevant variables should be even moderately correlated 

with the set of sparse relevant variables. It is here in model specification that theory plays an 

important part for inference in ML application.    
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Plot 20.21 Missing predictors in nonlinear ML Inference  

Still, ML has developed powerful procedures for prediction missing from traditional econometrics. 

One area is use of satellite images to extract economic outcomes, for instance, for tracking poverty 

when direct data for a developing country is missing. Another is use of language and text as data 

for prediction, for example, online financial messages as bullish, bearish or neither to predict 

market volatility and stock returns. Another type of ML application relevant for econometric 

application is when estimation requires a prior prediction step. The first stage of the linear 

instrumental variables model is effectively a predictive step for the endogenous variable by the 

instruments; the first stage estimates are merely a means to the second stage of consistent 

parameter estimation. Even with a few instruments, there would still be high-dimensional 

problems in scaling them, the functions used, and interactions, etc. In the ML approach such 

problems are resolved by the data picking the effective specification. Similarly, ML can help in 
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policy problem prediction, the impact of an income transfer program on how effectively it is 

targeted; that would involve predicting group benefits from their features. Finally, ML can test 

theories directly by treating that task as a model prediction. In this case, there are two approaches 

to model specification: top-down deductive, or bottom up inductive. The contribution of ML is to 

employ the inductive tools when the deductive method is hard to apply; it has always been the case 

that the two approaches co-exist in economics side-by-side.  

Selected Reading  

James et. al. (2021) chapter 7, 8 and 10 discuss nonlinear and deep learning M.L. models with 

many empirical exaples in R; Hastie et. al.  (2001) chapters 9, 10 and 11 coverr those models 

at greater depth and details. Cameron and Trivedi (2022), chapter 28 has several nonlinear 

M.L. empirical examples in Stata,  Muiiainathan et. al. (2017) examines the avantages of M.L. 

appraoch to econometric prediction while pointing out its drawbacks related to nonlinear 

inference. Brieman (2001) developed Random Forest.   
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LAB NONLINEAR SHRINKAGE MODELS 

Lab20 1. Single Tree-based model 

Open mus203mepsmedexp.dta and use health expenditure with suppl. Insurance as the principal 

variable of interest. We have 5 continuous and 14 binary variables, creating 188 predictors including 

interaction terms and start with a split of 80% training sample and 20% error test sample and remove 

all missing values to have fully observable samples. 

a) Estimate an OLS model of ltotexp regressed on the original 19 predictors; an adaptive Lasso with 

full list of predictors.  
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b) Now fit a multiple-tree Random forests model to the data set in a); then again fit a BART model 

to the same data. 
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c) Fit a PCA model with 5 PC of the 19 underlying predictors. 

 

Lab20 2. Neural networks. 

a) Open mus203mepsmedexp.dta and fit a non-linear Neural net model with 19 variables and 2 

hidden layers each having 10 units 

 

Lab20 3. Comparison of non-linear models.  

b) Compare Training and Test samples MES by various methods.  
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* The in-sample MSE is smallest for RF and neural net but the out-of-sample as the lowest MSE for the 

OLS with regressors and lasso estimators. 

 

Lab20 4. Single layer neural net.  

Note: This section requires keras package interface to python code via tensorflow package to fit neural 

models in R.    

Fit a single layer neural net to hitters data set 
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Lab 20 5. Multiple layers Nets.  

a) Open MNIST data set that comes with the keras package. This involves several steps in R.  

 

• 60000 images in the training and 10,000 in the test data set. We scale the unit inputs by grayscale 

values (0, 255).  

 

 

b) Fit a multi-layer neural net model to the data. 
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• The first layer of input units 28 by 28=784 goes into a hidden layer using ReLU activation 

function, dropout layer follows from the second hidden layer with 128 units, and the final output 

layer uses activation softmax for a 10-class classification- model minimization is by cross-entropy 

function. 

 

 

• Now we fit the model to the training data and obtain the test error 
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Lab-x 6. RNN Time-series prediction. 

a) Fit a time-series AR predictive model for prediction to the NYSE data set after standardizing, 

creating a data frame. 
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b) Refit the last model adding the factor day-of-week. 

 

c) Reshape the data as a sequence of L=5 feature vectors as the lagged version of the time-series 

back to L=5  

 

d) Fit the RNN using 12 hidden units with two forms of dropout feeding into the hidden layer by the 

input sequence and by previous hidden units.  

 

 

 

• We could replace the keras command with the following 
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LAB EXERCISES NONLINEAR SHRINKAKAGE 

Lab20_x 1. Single Tree: Classification 

 Open Carseats data file. 

a) Transform sales into a classification variable for high and low sales base on 8 as the threshold, 

merge the variable into a R data frame, obtain misclassification error from the descriptives, and 

plot the tree.  

 

b) plot the error rate and obtain the new test error prediction percentage. Does a larger tree produce a 

better test error? 

 

Lab20_x 2.  Single Tree: Regression 

 Open the data set Boston  

a) Fit a tree to the training set and plot the tree.  

 

b) Prune the tree to see if that improves prediction error.  

 

Lab20_x 3. Bagging & Random Forest 

a) Use Boston house price data to fit a bagging model (a special case of Random Forest with 

m=p).   

 

b) Fit a Random Forest model, obtain the importance of each variable and plot the outcome. 

 

Lab20_x 4. Boosting 

 Q-Fit a Boosting model to the Boston data, plot the descriptives, and use that to predict medv on 

the test set with different values for the shrinkage parameter λ. 

Lab20_x 5.  CNN 

 Open the CIFAR100 image data available in the keras package.  

a) Standardize the images with one-hot encode he response factors to produce a binary matrix, and 

provide some of the training images. 

 

b) Specify a moderate-size CNN with the same output and input channels,   

 

c) Fit the model by specifying the fitting algorithm  

 

Lab20_x 6. RNN 

 Open the IMDb movie-review data 

Q-Fit a sequential document classification LSTM two-layer model of RNN 
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Mathematical Appendix 

Characteristic Roots 

Let square matrix A have (n.n) dimension, with aij elements and x be a (n.1) vector such that  

Ax= λx 

then the scalar λ is called the characteristic root of A; rewrite this with the help of an identity 

matrix I of (n.n) dimension as 

(A -  λI)x=0 

Given all elements of x are zero, that is |A - λI|det=0, we solve the characteristic root equations, also 

known as eigenvalues, that satisfy the above.  

Examples below shows how to obtain λ solutions for A. 

Example 1: 

|A −   𝜆𝐼| = [
0.5 −0.2

−0.2 0.5
] - [

𝜆 0
0 𝜆

]=[
0.5 − 𝜆 −0.2
−0.2 0.5 − 𝜆

] 

The solving for λ that make |A - λI|det=0 leads to the quadratic equation λ2 - λ +.21=0. Let a=1, b= 

-1 ; c=0.21,  solving this quadratic equation by λ = 
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 . The two solutions are  λ1 =0.7 

and λ2 =0.3; in this example both are real number characteristic roots or eigenvalues. However, it 

is also possible to have complex numbers as solutions if  (√𝑏2 − 4𝑎𝑐) < 0, see below.  

Example 2: 

Now change A so each element in column 2 is twice the value in column 1: 

|A −   𝜆𝐼| = [
0.5 1

−0.2 −0.4
] - [

𝜆 0
0 𝜆

] = [
0.5 − 𝜆 1
−0.2 −0.4 − 𝜆

] 

Solving for the quadratic equation λ2 – 0.1 λ =0 leads to the two characteristic roots (both real 

number) of λ1 =0 and λ2 =0.1. 

The polynomial form of the characteristic equation depends on the number of its eigenvalue roots 

n; so, with A matrix with (n.n) dimension, the equation can be generalized as 
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λn + b1λ
n-1 + b2λ

n-2 +…+bn-1λ+ bn=0. 

The n roots of the characteristic equation can be positive, or negative, and in any case difficult to 

obtain; it is necessary to rely on numerical methods to solve for the n roots. However, often it is 

enough to know the qualitative features of the solution; sufficiency condition for the solutions to 

exist is that all eigenvalues of the characteristic equation be less than one in absolute values; we 

check this condition by ascertaining that the roots all fall within a circle with a unit radius, see 

discussion below. Note that bn is the only term in the equation unaffected by λ and defined by  

bn =(- 1)n|A|det. 

 It follows that λn and bn will have the same sign if n is even and opposite signs if n is odd. 

Let us check this rule with the above examples. For instance, take first example equation λ2 - λ 

+.21=0, b2=0.21, i.e. b1=-1, b2=0.21, and |A|=0.5*0.5 - 0(- 0.2* -0.2=0.21, thus b2=(-1)2*(0.21). 

For λ2 – 0.1 λ =0, b2=0 and |A|=0, thus b2=(-1)2*(0). Take an example with n=3: 

|A −   𝜆𝐼| =  [
0.5 − 𝜆 0.2 0.2

0.2 0.5 − 𝜆 0.2
0.2 0.2 0.5 − 𝜆

] 

The characteristic equation is  λ3 – 1.5 λ2 +0.63 𝜆 +0.081=0, eigenvalues are 𝜆1=0.9, 𝜆2=0.3 and 

𝜆3=0.3; |A|det=0.081, resulting in b3=(-1)3*(0.081). 

The characteristic roots can take any values and fall into three possible outcomes: 

1. All bi are real and distinct. Three subcases can occur. First, 0< bi< 1, the homogenous 

equation converges since the limit of each bt
i equal zero as t→∞. If bi< 0 & |bi<|1, bt

i will 

be positive for event values and negative for odd t values, the solution will again display 

convergence with oscillation. Finally. With |bi | > 1, the solution will diverge.  

2. All bi are real but m≤ n of the roots are repeated. Let the single common solution be  

b1= b2=…= bm= �̅� and the remaining distinct solutions n-m roots denoted by bm+1 through 

bn. In the former case, there will be m repeated solutions (𝑡�̅�t, 𝑡2�̅�t, …, 𝑡𝑚−1�̅�t ) to the 

homogenous equation.  

3. Some roots are complex, see below. Complex root solutions to a homogenous equation 

that come in conjugate pairs and have the form bi ± iφ, bi and  φ are real number and i =  
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√−1. They are usually expressed as polar coordinates of trigonometric relationships, see 

below. 

Determinants and Eigenvalues  

The determinants of A square matrix (n.n) is equal to the product of its eigenvalue roots: 

|A|= ∏ 𝜆𝑖
𝑛
𝑖=1  

Therefore, to solve for the quadratic characteristic equation solutions 𝜆1and 𝜆2 , we must have 

(𝜆 – 𝜆1)(𝜆 – 𝜆2)= λ2 + (𝜆1– 𝜆2) λ
 + 𝜆1𝜆2=0 

It follows that b2= 𝜆1𝜆2. Checking for λ2 - λ +.21=0,  b2= 0.21 and 𝜆1𝜆2 =(0.3)(0.7)= 0.21 and also 

|A|det=(0.5)2-(0.2)2=0.21. For λ2 – 0.1 λ =0, b2=0,  𝜆1𝜆2=(0)(0.1)=0 and also |A|det=0. And for λ3 – 

1.5 λ2 +0.63 𝜆 +0.081=0,  b3= - 0.081 and 𝜆1𝜆2𝜆3=(0.9)(0.3)(0.3)=0.081 (opposite signs), and 

|A|det=0.081. 

Unit Circle Test of Characteristic Roots Stability  

A time-series is stable when its lagged values decline as we move further back in time, that is, the 

lag variable coefficients become smaller as T→∞; otherwise, the series will be explosive. That 

equivalently depends on the size of the solutions for the eigenvalue roots of the characteristic 

equation of the series. Since some of the roots may be complex and some real, it is easier to check 

the size of the eigenvalue solutions by Argand diagram with complex unit circle. The same 

requirement applies to cointegrated time-series. Depending on the form of the characteristic 

equation, stability is satisfied if all the roots lie either strictly inside or strictly outside the unit 

circle, that is either all 𝜆𝑖 > 1, or equivalently all 𝜆𝑖 < 1. On the other hand, any roots falling on 

the unit circle suggest evidence of instability (non-stationarity). See, Appendix on complex roots 

and unit circle.  

Example: Cointegration test for US and EU natural gas prices with a differenced EU natural gas 

price series regressed on the lagged-level and lagged-differenced UG and EU results in the 

following 
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The characteristic equation of this model, demonstrated in the Argand diagram below produced by 

software, suggests a stable (stationary) model because all of the roots fall within the unit circle.  

 

https://1.bp.blogspot.com/-n9Nq5chXW94/UcDnLcgwtmI/AAAAAAAABN0/wlHF4YbA7m0/s1600/Capture.GIF
https://2.bp.blogspot.com/---loVdD-wW0/UcDo8hv2bMI/AAAAAAAABOE/YRCxf04aFu4/s1600/roots.gif
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Eigenvalues and Rank 

The rank r of a square (n. n) matrix A is equal to the number of independent rows (or columns): 

Rank (A)=r if r<n; A is a full rank matrix if rank(A)=n. Since the determinant is not equal to zero 

if all rows of A are independent, it follows that the rank of a matrix is equal to its nonzero 

eigenvalues, that is if |A|=n, the none of the eigenvalues can be zero. On the other extreme, if |A|=0, 

then all 𝜆i must be zero. The intermediate case is when some of the roots are zero and some none 

zero, 0<rank(A)=r<n.  Using the property of matrix determinant that interchanging its rows (or 

columns) does not affect its value, we can re-arrange |A −   𝜆𝐼| =0 so that the first r rows are of 

linearly independent, and the remaining (n-r) rows are zero roots.  

Applications to Cointegration and Rank in Johansen Procedure 

The Johansen procedure rests on the relationship between the rank of matrix and its eigenvalues. 

∆xt=A1xt-1 -xt-1 +εt= (A1 – I)xt-1+εt=πxt-1+εt 

The rank of π=(A1 – I) is equal to the number of cointegrated vectors; as a result, if π=(A1 – I)= 0, 

all the {xit} processes are unit root and thus not cointegrated, while if π=(A1 – I)= n, then all the 

variables are stationary if we exclude characteristic roots greater than 1 to ensure a convergent 

system of difference equations. If the rank π=1, then all rows of π can be written as a scalar 

multiple of the first: 

∆xit= (π11 x1t-1+ π12x2t-1+…+ π1nxnt-1)+εit  or 

where s1=1 and si= πij/ π11. Therefore, (π11 x1t-1+ π12x2t-1+…+ π1nxnt-1) =(∆xit  - εit)/si  because ∆xit  

is I(1) and εit is a standard normal random error; if rank(π)=r, there are r linearly independent 

stationary combinations; if  rank(π)=n, all variables are stationary. The Johansen test determines 

the number of the roots significantly different from zero; if all eigenvalues of A1are within the unit 

circle, then π is of full rank.  

 

Johansen method of calculating eigenvalues 

The Johansen method first selects the appropriate number of lags for the VAR model 
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xt= A1xt-1+ A2xt-2+…+ Apxt-p)+εt 

First, estimate the VAR in first differences: ∆xt= B1∆xt-1+ B2∆xt-2+…+ Bp-1∆xt-p+1+e1t 

Second, regress xt-1 on a VAR of the form:  xt-1= C1∆xt-1+ C2∆xt-2+…+ Cp-1∆xt-p+1+e1t 

Third, compute the squares of the n (canonical) correlations between e1t and e2t obtained from  the 

solutions to| λS22 – S12S
-1

11S’12|=0  where Sij=T - 1∑ 𝑒𝑖𝑡(
𝑇
𝑖=1 𝑒𝑖𝑡)′ and S12=T - 1∑ 𝑒2𝑡(

𝑇
𝑖=1 𝑒1𝑡)′; e1t and 

e2t are column vectors of residuals in first and second steps. 

Fourth, Obtain the maximum likelihood of the cointegrating vectors from the solutions to  

λS22 πi= = S12S
-1

11S’12πi 

VI imaginary and complex numbers 

The quadratic equation x2=1 has two real number solutions, x=1 and x=-1. By contrast no real 

number satisfies x2= - 1. However, consider an imaginary number i2= - 1;  i can be multiplied 

using standard rules, e.g. (2i).(3i)=(6)i2= - 6. This suggests x= -1 is a solution to  x2= - 1:  

(- i)2=(- 1)2.(i)2= - 1. Therefore, the firs equation has two real number roots (+1; - 1), while the 

second equation has two imaginary roots (i ; - i).  Given any real numbers a & b, then (a+bi) 

represents a real number if b=0, and an imaginary number if a=0 and b is nonzero. In general, a 

complex number is expressed by (a+bi), i.e. such a number has two components: a real number a 

and an imaginary number bi.  

Complex numbers are added and multiplied using the standard algebraic rules: 

I- (a1+b1i)+(a2+b2i)= (a1+a2)+(b1+b2)i ; 

II- (a1+b1i).(a2+b2i)= a1a2+a1b2i + b1a2i+b1b2 i
2= (a1a2  - b1b2)+ (a1b2  - b1a2)i 

We usually simplify a complex number by separating its real component (a1a2  - b1b2), from its  

imaginary component (a1b2  - b1a2)i.  

 

Trigonometric representation of complex numbers. 
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Figure 1 presents a circle with a radius equal to one at the origin of (x, y); (x0, y0) and ϴ is the angel 

at this point with the x-axis. The sine of ϴ is defined as the y-coordinate of the point; the cosine 

its x-coordinate.   

sin(ϴ)= y0 & cos(ϴ)= x0 

 

Figure 1 Graphical Presentation of complex numbers  

ϴ is measured in radians, that is the counterclockwise distance along the unit circle from the x-

axis to the point (x0, y0); the circumference of a unit radius circle is 2π; one-quarter rotation around 

the unit circle is  ϴ=1/4(2π)= π/2 radian, therefore, the 900 right angel triangle. As a result, a 450 

angel is π/4 radian; a 1800 has an angle of π radian, etc. 

Consider the smaller triangle with vertex (x1, y1) that shares the same angle with the original 

triangle. Then 

y1/c1=y0/1  &  x1/c1=x0/1  or 

y1= c1. sin(ϴ)  & x1= c1. cos(ϴ) 

Furthermore, c1 is the Euclidian distance from the origin to (x1, y1) point, and given by 

c1=√𝑥1
2 + 𝑦1

2. Describing the point in terms of c1. sin(ϴ) & c1. con(ϴ) called its polar coordinates 

of c and ϴ. 

Properties of Sine and Cosine Functions 

The functions sin(ϴ) & con(ϴ)are known as sinusoidal functions. Figure 2 illustrates that as a 

function of ϴ; at zero Sin(0)=0, the function rises to 1 as  ϴ rises to π/2, then falls to zero as  ϴ 

rises further to π , its minimum is -1 at ϴ= 3π/2 and then starts moving up. Once a distance of 2π 
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radians around the unit circle is covered, the function repeats itself. sin(2π + ϴ)= sin(ϴ); more 

generally with j full revolutions 

sin(2πj + ϴ)= sin(ϴ) 

The sine function is thus periodic; employed in time-series analysis to describe a cycle that repeats 

itself in a specific cycle. The cosine function starts at 1 and falls to zero as ϴ rises to π/2; it is a 

horizontal shift of the sine function: 

cos(ϴ)=sin(π/2 + ϴ) 

With the negative values of ϴ (clockwise rotation), we have 

sin(- ϴ)= - sin(ϴ)  &  cos(- ϴ)= cos(ϴ) 

A point (x0, y0) on the unit circle has 1=√𝑥0
2 + 𝑦0

2, and 1= [cos(ϴ)]2+ [sin(ϴ)]2 

Trigonometric representation of cycles 

Define a function g(ϴ)=sin(2ϴ), i.e. as ϴ goes from zero to π, 2ϴ goes from zero to 2π, so g(ϴ) 

is back at its initial value. More generally, sin(kϴ) goes through k cycles in the time it takes for 

sin(ϴ) to complete a single cycle, see Figure 2.  

We can define the values of y at time t as a function of sine and cosine such as 

yt=R.cos(𝜔𝑡 +  𝛼) 

R is the amplitude of the equation, yt achieves a maximum +R and a minimum of - R. 𝛼 called the 

phase, determines where the cycle yt would be at t=0. The parameter 𝜔 determines how quickly 

the variable cycles, and it is presented by two measures: the period is the duration of time it takes 

for the process to repeat one full cycle. For example, if  𝜔. =1, y repeats itself every 2π period; if  

𝜔 =2, then y repeats itself every π period. The frequency measures how frequently yt cycles 

compared to the simple cos(t), that is a measure of the number of cycles completed in 2π periods, 

for instance, with 𝜔 =2, the cycles complete twice as quickly as those for cos(t). There is a 

relationship between these two measures of speed of cyclical rotation, namely the period is equal 

to 2π divided by frequency.  
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Figure 2 Sine & Cosine perodic functions and effect of changing their frequency. 

We can preset the complex number (a + bi) in an Argand diagram by Figure 3, with real component 

(a) on the horizontal axis and the imaginary component (b) on the vertical axis. The size, or the 

modulus, of a complex number is measured by the distance |a + bi| =√𝑎2 + 𝑏2The complex unit 

circle is the set of all complex numbers whose modulus is unity. In Figure 3, the real number +1 

is presented by point A, the imaginary number – i by point B, and the complex number (- 0.6 – 

0.8i) by point C. A key aspect of interest of a complex number is whether its modulus is less than 

1, and hence inside the unit circle. For example, (- 0.3 + 0.4i)= √0.09 + 0.16 = √0.25=0.5 but (3 

+ 4i)= √9 + 16 = √25=5 is not inside the unit circle. A complex number can be presented by its 

modulus R=√𝑎2 + 𝑏2 and the angel of ϴ it makes with the real axis as measured by  

cos(ϴ)=a/R  & sin( ϴ)=b/R 

Hence, a complex number in polar coordinates form is written as  

[R.cos(ϴ)+i.R. sin( ϴ)]=R[cos( ϴ) + i.sin (ϴ)] 
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The complex conjugate of (a + bi) is (a - bi); the two numbers are conjugate pairs. adding a 

conjugate pairs results in a real number (equal to 2a), while their product is also a real number (a2 

+b2). Finally, the modulus of a complex number is equal to the square root of its conjugate pairs:  

|a + bi| =√(𝑎 + 𝑖𝑏). (𝑎 − 𝑖𝑏). 

 

Figure 3-Unit circle Presentation of Complex root eigenvalues 

Stability of a time-series, namely, convergence to its long-run path, requires testing for the size 

of the characteristic solutions some of which may be complex, some real. The size of the 

complex well as real characteristic roots can easily be checked with Argand diagram. Suppose an 

AR(p) model 

Yt=λ1yt-1 + λ2yt-2+ … + λpyt-p+εt or (yt - λ1yt-1 - λ2yt-2 - … - λpyt-p) = εt 

This model is dynamically stable if all of the z roots of its characteristic equation obtained from 

solving  

(1 - λ1z - λ2z
2 - … - λpzp) = 0 

lie strictly outside the unit circle. That is, for any eigenvalue solution z substituted in the above 

condition, the sum of the terms to the right of 1 must be less than 1. It must be pointed out that this 

condition can also be stated in terms of the roots of the inverse characteristic equation, i.e. 

expressed in terms of the lag operator coefficients of the series, see section 5.3. That is, the 

condition can be equivalently stated that all eigenvalues of 

(zp - λ1z
t-1 - λ2z

t-2 - … - λp) = 0 
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lie strictly inside the unit circle. For example, for an AR(2) model, dynamic stability (stationarity) 

requires that either all roots of the quadratic equation (1 - λ1z - λ2z
2)=0 lie strictly outside the unit 

circle; or all roots of the quadratic equation (z2 - λ1z - λ2)=0 lie strictly inside the unit circle,  see  

Q 6.1 exercise.  

Geometric series approximations for Rational functions  

A rational function expresses a y variable as a ratio of two polynomials in an x variable; for 

example, y=
𝑥 −1

𝑥2+2𝑥 +4
 . This definition suggests that any polynomial can always be a rational 

function expressed as a ratio to 1, e.g. as y=
1

𝑥2+2𝑥 +4
 . In time-series analysis, when the polynomials 

represent to infinite series of lags over time, we can obtain good approximations for such series by 

expressing them as rational function that provide the basis for the rational distributed lag model  

yt = α  x 
𝛽(𝐿)

𝜆(𝐿)
 xt + εt 

where 𝛽(𝐿) & 𝜆(𝐿) typically stand for lags distributed over t of yt and εt , written in the lag operator; 

such a model is parsimoniously effective when the lag series are expressed in terms of their 

approximate functions.  

 Let us examine the relationship between an infinite series and its approximation. Consider  

f(x)=  
1

1− 𝑥 
 . If x ≠ o, then 

1

1− 𝑥 
 = 1 + 

1

1− 𝑥 
 , hence the approximation error is 1. Multiplying the 

above by x results in 
1

1− 𝑥 
 = x + 

𝑥2

1− 𝑥 
 =1 + x + 

𝑥2

1− 𝑥 
, hence 

1

1− 𝑥 
 =1 + x, and the approximation error 

is 
𝑥2

1− 𝑥 
. Multiplying the above by x results in 

1

1− 𝑥 
 = 1+ x + 𝑥2 + 

𝑥3

1− 𝑥 
 =1 + x + 𝑥2+ 

𝑥3

1− 𝑥 
, so  

1

1− 𝑥 
 

= 1+ x + 𝑥2, and the approximation error is 
𝑥3

1− 𝑥 
 ; etc. Therefore, we can approximate the sum of 

an infinite series (1+x+x2+x3+…) by 
1

1− 𝑥 
, that is as a rational function of the series itself, subject 

to the sum of the degrees of approximation errors at each step. Since the series is defined by a 

common ratio of x, it is a geometric series, and the key requirement for approximating a geometric 

series by the series rational function itself is for |x|< 1, otherwise the approximation method does 

not work, i.e. the series diverge and explode.  However, provided |x|< 1, the approximation will be 

small, for example if x=0.1, then approximating for (1+x+x2+x3) by 
1

1− 𝑥 
 results in 
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[(0.1)4/0.9]*100%=0.01 percent; if on the other hand x > 1 the approximation will no longer be 

useful.   
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